cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028609 Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z)).

Original entry on oeis.org

1, 2, 0, 4, 2, 4, 0, 0, 0, 6, 0, 2, 4, 0, 0, 8, 2, 0, 0, 0, 4, 0, 0, 4, 0, 6, 0, 8, 0, 0, 0, 4, 0, 4, 0, 0, 6, 4, 0, 0, 0, 0, 0, 0, 2, 12, 0, 4, 4, 2, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 8, 0, 0, 0, 2, 0, 0, 4, 0, 8, 0, 4, 0, 0, 0, 12, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 8, 0, 0, 0, 4, 0, 6, 6, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Theta series of lattice with Gram matrix [2, 1; 1, 6].
Number of integer solutions (x, y) to x^2 + x*y + 3*y^2 = n. - Michael Somos, Sep 20 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^3 + 2*x^4 + 4*x^5 + 6*x^9 + 2*x^11 + 4*x^12 + 8*x^15 + ...
Theta series of lattice with Gram matrix [2, 1; 1, 6] = 1 + 2*q^2 + 4*q^6 + 2*q^8 + 4*q^10 + 6*q^18 + 2*q^22 + 4*q^24 + 8*q^30 + 2*q^32 + 4*q^40 + 4*q^46 + 6*q^50 + 8*q^54 + 4*q^62 + 4*q^66 + 6*q^72 + 4*q^74 + ...
		

References

  • Henry McKean and Victor Moll, Elliptic Curves, Cambridge University Press, 1997, page 202. MR1471703 (98g:14032).

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), this sequence (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(11), 1), 103); A[1] + 2*A[2] + 4*A[4] + 2*A[5]; /* Michael Somos, Jul 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], DivisorSum[ n, KroneckerSymbol[ -11, #] &] 2]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^11], {q, 0, n}]; (* Michael Somos, Jul 12 2014 *)
  • PARI
    {a(n) = my(t); if( n<1, n==0, 2 * issquare(n) + 2 * sum( y=1, sqrtint(n * 4\11), 2 * issquare( t=4*n - 11*y^2) - (t==0)))}; /* Michael Somos, Sep 20 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep( [ 2, 1; 1, 6], n, 1)), n))}; /* Michael Somos, Apr 21 2015 */
    
  • PARI
    {a(n) = if( n<1, n==0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -11, p) * X))[n] * 2)}; /* Michael Somos, Jun 05 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -11, d)))}; /* Michael Somos, Jan 29 2007 */
    

Formula

Expansion of phi(x) * phi(x^11) = 4 * x^3 * psi(x^2) * psi(x^22) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 21 2015
From Michael Somos, Jan 29 2007: (Start)
Moebius transform is period 11 sequence [ 2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 0, ...].
a(n) = 2 * b(n) and b(n) is multiplicative with b(11^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 2, 6, 7, 8, 10 (mod 11), b(p^e) = e + 1 if p == 1, 3, 4, 5, 9 (mod 11).
G.f.: 1 + 2 * Sum_{k>0} Kronecker( -11, k) * x^k / (1 - x^k). (End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 05 2007
Expansion of (F(x)^2 + 4 * F(x^2)^2 + 8 * F(x^4)^2) / F(x^2) in powers of x or expansion of (F(x)^2 + 2 * F(x^2)^2 + 2 * F(x^4)^2) / F(x^2) in powers of x^4 where F(x) = x^(1/2) * f(-x) * f(-x^11) and f() is a Ramanujan theta function. - Michael Somos, Mar 01 2010
a(n) = 2 * A035179(n) unless n=0. Convolution square is A028610.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(11) = 1.894451... . - Amiram Eldar, Dec 16 2023

A056874 Primes of form x^2+xy+3y^2, discriminant -11.

Original entry on oeis.org

3, 5, 11, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

Also, primes of form (x^2+11*y^2)/4.
Also, primes of the form x^2-xy+3y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes congruent to 0, 1, 3, 4, 5 or 9 (mod 11). As this discriminant has class number 1, all binary quadratic forms ax^2+bxy+cy^2 with b^2-4ac=-11 represent these primes. - Rick L. Shepherd, Jul 25 2014
Also, primes which are squares (mod 11) (or, (mod 22), cf. A191020). - M. F. Hasler, Jan 15 2016
Also, primes p such that Legendre(-11,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017

Crossrefs

Cf. A002346 and A002347 for values of x and y.
Primes in A028954.

Programs

  • Mathematica
    QuadPrimes2[1, 1, 3, 100000] (* see A106856 *)
  • PARI
    { fc2(a,b,c,M) = my(p,t1,t2,n);
    m = 0;
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, m++; print(m," ",p )));
    }
    fc2(1,-1,3,10703);

Extensions

Edited by N. J. A. Sloane, Jun 01 2014 and Jun 16 2014

A106857 Primes of the form x^2+xy+3y^2, with x and y nonnegative.

Original entry on oeis.org

3, 5, 23, 31, 37, 47, 53, 59, 67, 89, 97, 113, 157, 163, 179, 181, 191, 199, 251, 257, 269, 311, 313, 317, 331, 367, 379, 383, 389, 401, 419, 433, 443, 449, 463, 487, 499, 509, 521, 577, 587, 599, 617, 641, 643, 647, 653, 683, 691, 709, 719, 727, 751, 757
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-11.

Crossrefs

A056874 is the main sequence for these primes. Cf. A028954.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    t2 = QuadPrimes2[1, 1, 3, 1000]

Extensions

Replaced defective Mma program, extended b-file. - N. J. A. Sloane, Jun 16 2014

A035247 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -11.

Original entry on oeis.org

1, 3, 4, 5, 9, 11, 12, 15, 16, 20, 23, 25, 27, 31, 33, 36, 37, 44, 45, 47, 48, 49, 53, 55, 59, 60, 64, 67, 69, 71, 75, 80, 81, 89, 92, 93, 97, 99, 100, 103, 108, 111, 113, 115, 121, 124, 125, 132, 135, 137, 141, 144, 147, 148, 155, 157, 159, 163, 165, 169, 176, 177, 179, 180, 181, 185, 188, 191, 192, 196, 199
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A028954 (a probable duplicate). [From R. J. Mathar, Oct 20 2008]
Cf. A035179 (the expansion itself).

Programs

  • Mathematica
    Reap[For[n = 1, n < 200, n++, r = Reduce[x^2 + x y + 3 y^2 == n, {x, y}, Integers]; If[r =!= False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
  • PARI
    m=-11; select(x -> x, direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020

Extensions

More terms from Jean-François Alcover, Oct 31 2016
Name corrected by Andrey Zabolotskiy, Jul 30 2020
Showing 1-4 of 4 results.