cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029007 Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^5)).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 8, 11, 13, 17, 19, 24, 27, 33, 37, 44, 49, 57, 63, 73, 80, 91, 99, 112, 122, 136, 147, 163, 176, 194, 208, 228, 244, 266, 284, 308, 328, 354, 376, 405, 429, 460, 486, 520, 549, 585, 616, 655, 689
Offset: 0

Views

Author

Keywords

Comments

Partitions of n into parts 1, 2, 4 and 5. - David Neil McGrath, Sep 14 2014

Examples

			There are 7 partitions of 6 from 1,2,4 and 5. These are (51)(42)(411)(222)(2211)(21111)(111111). - _David Neil McGrath_, Sep 14 2014
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 11*x^8 + ...
		

Programs

  • Maple
    f:= gfun[rectoproc]({a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=5, a(6)=7, a(7)=8, a(8)=11, a(9)=13, a(10)=17, a(11)=19, a(n)=a(n-1)+a(n-2)-a(n-3)+a(n-4)- 2*a(n-6)+ a(n-8)-a(n-9)+a(n-10)+a(n-11)-a(n-12)},a(n)):
    seq(f(n),n=0..100); # Robert Israel, Sep 14 2014
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)(1-x^5)),{x,0,50}],x] (* or *) LinearRecurrence[{1,1,-1,1,0,-2,0,1,-1,1,1,-1},{1,1,2,2,4,5,7,8,11,13,17,19},50] (* Harvey P. Dale, Dec 06 2013 *)
  • PARI
    a(n)=my(v=apply(u->for(i=1,#u,if(u[i]==3,return(0)));1,partitions(n,5)));sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Sep 15 2014

Formula

a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=5, a(6)=7, a(7)=8, a(8)=11, a(9)=13, a(10)=17, a(11)=19, a(n)=a(n-1)+a(n-2)-a(n-3)+a(n-4)- 2*a(n-6)+ a(n-8)-a(n-9)+a(n-10)+a(n-11)-a(n-12). - Harvey P. Dale, Dec 06 2013
a(n) = floor((2*n^3+36*n^2+193*n+525)/480+(n+1)*(-1)^n/32). - Tani Akinari, Sep 30 2014
Euler transform of length 5 sequence [ 1, 1, 0, 1, 1]. - Michael Somos, Sep 30 2014
a(n) = -a(-12-n) for all n in Z. - Michael Somos, Sep 30 2014
0 = a(n) - a(n+1) - a(n+5) + a(n+6) for all odd n in Z. - Michael Somos, Sep 30 2014
0 = a(n) - a(n+1) - a(n+5) + a(n+6) - floor((n+10)/4) for all even n in Z. - Michael Somos, Sep 30 2014