cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029073 Expansion of 1/((1-x)*(1-x^4)*(1-x^7)*(1-x^8)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 5, 5, 5, 6, 8, 8, 9, 11, 14, 14, 15, 17, 20, 21, 23, 26, 30, 31, 33, 36, 41, 43, 46, 50, 56, 58, 61, 66, 73, 76, 80, 86, 94, 97, 102, 109, 118, 122, 128, 136, 146, 151, 158, 167, 178, 184, 192
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 4, 7 and 8. - Ilya Gutkovskiy, May 18 2017

References

  • J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is G_{rot}(t) on page 122.

Programs

  • Maple
    1/( (1-x)*(1-x^4)*(1-x^7)*(1-x^8) );
  • PARI
    a(n) = floor((n^3 + 30*n^2 + 257*n + 1344)/1344 + (n/64)*[3,0,-1,0][n%4+1] + (3/7)*((n%8==0) - (n%28==6) - (n%28==27))) \\ Hoang Xuan Thanh, Aug 01 2025

Formula

a(n) = floor((n^3 + 30*n^2 + 257*n + 1344)/1344 + ((n+7)/64)*(3*[(n mod 4)=0] - [(n mod 4)=2]) + (1/7)*([(n mod 56)=16] - [(n mod 56)=27])). - Hoang Xuan Thanh, Aug 01 2025