A029143 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.
1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11, 12, 14, 17, 16, 21, 22, 24, 27, 31, 31, 37, 39, 42, 46, 52, 52, 60, 63, 67, 73, 80, 81, 91, 95, 101, 108, 117, 119, 131, 137, 144, 153, 164, 167, 182, 189, 198, 209, 222
Offset: 0
References
- H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary.
- L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- W. C. Huffman, The biweight enumerator of self-orthogonal binary codes, Discr. Math. Vol. 26 1979, pp. 129-143.
- J. Igusa, On Siegel modular forms of genus 2, Amer. J. Math., 84 (1962), 175-200.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1).
Crossrefs
Programs
-
Maple
M := Matrix(16, (i,j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1,1]: seq(a(n), n=0..54); # Alois P. Heinz, Jul 25 2008
-
Mathematica
CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)),{x,0,54}],x] (* Jean-François Alcover, Mar 20 2011 *) LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{1,0,1,1,1,2,3,2,4,4,5,6,8,7,10,11},60] (* Harvey P. Dale, May 12 2015 *)
Formula
a(n) ~ 1/1080*n^3. - Ralf Stephan, Apr 29 2014
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - Harvey P. Dale, May 12 2015
Extensions
Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009
Comments