cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029143 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11, 12, 14, 17, 16, 21, 22, 24, 27, 31, 31, 37, 39, 42, 46, 52, 52, 60, 63, 67, 73, 80, 81, 91, 95, 101, 108, 117, 119, 131, 137, 144, 153, 164, 167, 182, 189, 198, 209, 222
Offset: 0

Views

Author

Keywords

Comments

a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight 2k (for the full modular group Gamma_2). Also: Number of solutions of 4x+6y+10z+12w=k in nonnegative integers x,y,z,w. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
Number of partitions of n into parts 2, 3, 5, and 6. - Joerg Arndt, Jun 21 2014

References

  • H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31).

Crossrefs

Cf. A027640 for the dimension of even and odd weight Siegel modular forms. See A165684 (resp. A165685) for the corresponding space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

Programs

  • Maple
    M := Matrix(16, (i,j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1,1]: seq(a(n), n=0..54); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)),{x,0,54}],x] (* Jean-François Alcover, Mar 20 2011 *)
    LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{1,0,1,1,1,2,3,2,4,4,5,6,8,7,10,11},60] (* Harvey P. Dale, May 12 2015 *)

Formula

a(n) = A165684(n) + A008615(n+2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
a(n) ~ 1/1080*n^3. - Ralf Stephan, Apr 29 2014
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - Harvey P. Dale, May 12 2015

Extensions

Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009