cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A165684 Dimension of the space of Siegel cusp forms of genus 2 and dimension 2n (associated with full modular group Gamma_2).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 11, 13, 13, 17, 18, 20, 23, 26, 27, 32, 34, 37, 41, 46, 47, 54, 57, 61, 67, 73, 75, 84, 88, 94, 101, 109, 112, 123, 129, 136, 145, 155, 159, 173, 180, 189, 200, 212, 218, 234, 243, 254, 267, 282, 289, 308, 319
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Keywords

Examples

			a(5)=1 as the space of Siegel cusp forms of genus 2 and weight 10 is one-dimensional.
		

References

  • M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.

Crossrefs

Cf. A029143 (dimension of the full space of Siegel modular forms of genus 2).

Programs

  • Mathematica
    N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231); N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4; DimSk[k_] := N1[k] + N2[k] + N3[k] + N4[k]/;Mod[k,2]==0; Table[DimSk[2k],{k,1,100}]
    CoefficientList[Series[-x^4*(x^6 - x - 1)/((1 - x^2)*(1 - x^3)*(1 - x^5)*(1 - x^6)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 20 2014 *)
    LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{0,0,0,0,1,1,1,2,2,3,4,5,5,7,8,9},70] (* Harvey P. Dale, Dec 25 2016 *)

Formula

G.f.: -x^5*(x^6-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013
a(n) = 1/1080*n^3 + 1/45*n^2 + O(n). (from g.f.) - Ralf Stephan, Jun 20 2014

Extensions

More terms from Wesley Ivan Hurt, Jun 20 2014

A165685 Dimension of the space of Siegel cusp forms of genus 2 and weight n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0, 7, 0, 8, 0, 9, 0, 11, 1, 13, 0, 13, 1, 17, 1, 18, 1, 20, 2, 23, 3, 26, 2, 27, 4, 32, 4, 34, 5, 37, 6, 41, 8, 46, 7, 47, 10, 54, 11, 57, 12, 61, 14, 67, 17, 73, 16, 75, 21, 84, 22, 88, 24, 94, 27, 101, 31, 109, 31, 112
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Keywords

Examples

			a(35)=1 as the dimension of the space of Siegel cusp form of genus 2 and weight 35 is 1.
		

References

  • M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.

Crossrefs

Cf. A008615, A029143. A165684 gives only the even weights.

Programs

  • Mathematica
    N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231) /; Mod[k, 2] == 0; N1[k_] := 2^(-7)*3^(-3)*5^(-1)*(2 k^3 - 114 k^2 + 2018 k - 9051) /; Mod[k, 2] == 1; N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 325) /; Mod[k, 12] == 1; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 261) /; Mod[k, 12] == 3; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k + 53) /; Mod[k, 12] == 5; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 91) /; Mod[k, 12] == 7; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k - 27) /; Mod[k, 12] == 9;
    N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N2[k_] := 2^(-5)*3^(-3)*(17 k - 181) /; Mod[k, 12] == 11; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*229 /; Mod[k, 12] == 1; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*(-1131) /; Mod[k, 12] == 3; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*(-571) /; Mod[k, 12] == 5;
    N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*(-203) /; Mod[k, 12] == 7; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*(-123) /; Mod[k, 12] == 9; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*(-427) /; Mod[k, 12] == 11; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4;
    DimSk[k_] := If[k >= 7, N1[k] + N2[k] + N3[k] + N4[k], 0];
    Table[ DimSk[k], {k, 1, 100}]
    (* second program: *)
    init = {0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0};
    ker = {0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1};
    ans = LinearRecurrence[ker, init, 100];
    ans[[3]] = 0 ; ans (* Andy Huchala, Mar 03 2022 *)
  • Sage
    R. = PowerSeriesRing(ZZ, 100);
    p = x^26 + x^24 - x^21 - x^19 + x^18 - x^17 - x^14 - x^13 + x^10 + x^9 + x^8 + x^7 - x^3;
    q = x^27 - x^23 - x^22 - x^21 + x^18 + x^17 + x^16 - x^15 - x^12 + x^11 + x^10 + x^9 - x^6 - x^5 - x^4 + 1;
    (x^3 + p/q).list()[1:] # Andy Huchala, Mar 03 2022

Formula

G.f.: x^10 (1+x^2-x^5-x^7+x^10-x^15+x^20) / ((-1+x)^4 (1+x)^3 (1+2x^2+2x^4+x^6)^2 (1+x+x^4+x^7+x^8)). - Andy Huchala, Mar 03 2022
a(2n) = A165684(n) and a(2n+35) = A029143(n). - Andy Huchala, Mar 04 2022

Extensions

a(73) corrected by Andy Huchala, Mar 02 2022

A352095 Dimension of the space of Siegel cusp forms of genus 3 and weight 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 6, 9, 14, 17, 27, 34, 46, 61, 82, 99, 135, 165, 208, 261, 325, 389, 490, 584, 708, 852, 1023, 1200, 1445, 1687, 1984, 2327, 2717, 3133, 3663, 4199, 4838, 5557, 6360, 7225, 8267, 9344, 10587, 11968, 13489, 15126, 17037, 19023
Offset: 0

Views

Author

Andy Huchala, Mar 09 2022

Keywords

Comments

There are no nonzero Siegel cusp forms of genus 3 and odd weight.
Sequence satisfies linear recurrence of order 54 for a(n) when n > 57.

Examples

			The space of weight 18 Siegel cusp forms of genus 3 has dimension 4.
		

Crossrefs

Programs

  • Sage
    R. = PowerSeriesRing(ZZ,100)
    p = -x^56 + x^55 - x^54 - x^51 - 3*x^48 + x^47 - 3*x^46 - 2*x^45 - 2*x^44 - 3*x^43 - 4*x^42 - 2*x^41 - 7*x^40 - 3*x^39 - 8*x^38 - 4*x^37 - 10*x^36 - 6*x^35 - 10*x^34 - 9*x^33 - 9*x^32 - 9*x^31 - 13*x^30 - 5*x^29 - 15*x^28 - 6*x^27 - 11*x^26 - 10*x^25 - 8*x^24 - 8*x^23 - 11*x^22 - 4*x^21 - 10*x^20 - 5*x^19 - 6*x^18 - 5*x^17 - 6*x^16 - 2*x^15 - 6*x^14 - 2*x^13 - 3*x^12 - 3*x^11 - 2*x^10 - x^9 - 2*x^8 - x^6;
    q = x^54 - x^53 - 2*x^48 + x^47 + x^46 - x^45 + x^43 + x^42 + x^41 - 2*x^40 + x^39 + 2*x^38 - 2*x^37 - x^36 + x^33 - 3*x^32 + 3*x^30 - 2*x^29 + 2*x^25 - 3*x^24 + 3*x^22 - x^21 + x^18 + 2*x^17 - 2*x^16 - x^15 + 2*x^14 - x^13 - x^12 - x^11 + x^9 - x^8 - x^7 + 2*x^6 + x - 1;
    (p/q).list()[:30]

Formula

G.f.: p/q with p,q given in Sage program.
a(n) = A027634(n) - A029143(n).

A165686 Dimension of the space of Siegel cusp forms of genus 2 and weight 2k which are not Saito-Kurokawa lifts of forms of genus 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 8, 11, 12, 14, 16, 19, 20, 24, 26, 29, 32, 37, 38, 44, 47, 51, 56, 62, 64, 72, 76, 82, 88, 96, 99, 109, 115, 122, 130, 140, 144, 157, 164, 173, 183, 195, 201, 216, 225, 236, 248, 263, 270, 288, 299, 312, 327, 344, 353, 374
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

Keywords

Comments

Also the dimension of the largest Hecke-closed subspace of forms in S_k(Gamma_2) which satisfy the Ramanujan-Petersson conjecture. These forms are also characterized by the property that their (Andrianov) spinor zeta function does not have any pole.

Examples

			a(20)=1 because there is exactly one Siegel modular form of genus 2 and weight 20 which is not a lift of some form of genus 1.
		

References

  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhaeusser, 1985.
  • T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256(3), p. 323-340, 1981.
  • R. Weissauer, The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)

Crossrefs

Cf. A165684 for the full space of Siegel cusp forms. See also A029143, A027640, A165685.

Formula

For k > 1 we have a(k) = A165684(k) - A008615(2k-5).
Conjectured G.f.: -x^10*(x^7+x^6-x^2-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013
Showing 1-4 of 4 results.