cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A029143 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11, 12, 14, 17, 16, 21, 22, 24, 27, 31, 31, 37, 39, 42, 46, 52, 52, 60, 63, 67, 73, 80, 81, 91, 95, 101, 108, 117, 119, 131, 137, 144, 153, 164, 167, 182, 189, 198, 209, 222
Offset: 0

Views

Author

Keywords

Comments

a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight 2k (for the full modular group Gamma_2). Also: Number of solutions of 4x+6y+10z+12w=k in nonnegative integers x,y,z,w. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
Number of partitions of n into parts 2, 3, 5, and 6. - Joerg Arndt, Jun 21 2014

References

  • H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31).

Crossrefs

Cf. A027640 for the dimension of even and odd weight Siegel modular forms. See A165684 (resp. A165685) for the corresponding space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

Programs

  • Maple
    M := Matrix(16, (i,j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1,1]: seq(a(n), n=0..54); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)),{x,0,54}],x] (* Jean-François Alcover, Mar 20 2011 *)
    LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{1,0,1,1,1,2,3,2,4,4,5,6,8,7,10,11},60] (* Harvey P. Dale, May 12 2015 *)

Formula

a(n) = A165684(n) + A008615(n+2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
a(n) ~ 1/1080*n^3. - Ralf Stephan, Apr 29 2014
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - Harvey P. Dale, May 12 2015

Extensions

Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009

A165682 Primes p such that 3*p*(p-1)+1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 31, 43, 53, 59, 67, 89, 109, 137, 157, 173, 197, 239, 313, 347, 353, 389, 449, 521, 547, 557, 571, 577, 599, 613, 647, 677, 733, 743, 787, 857, 907, 941, 977, 1051, 1069, 1093, 1153, 1193, 1223, 1229, 1237, 1303, 1433, 1453, 1459, 1481, 1571
Offset: 1

Views

Author

Vincenzo Librandi, Sep 24 2009

Keywords

Examples

			For p=5 = a(3), 3*p^2-3*p+1=61 = A165683(3). For a(4)=p=7: 3*p^2-3*p+1=127 = A165684(4).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | IsPrime(3*p*(p-1)+1)]; // Vincenzo Librandi, Apr 15 2013
  • Mathematica
    Select[Prime[Range[800]], PrimeQ[3 # (# - 1) + 1]&] (* Vincenzo Librandi, Apr 15 2013 *)

Formula

3*a(n)*(a(n)-1)+1 = A165683(n).

Extensions

2 and 3 inserted by R. J. Mathar, Sep 26 2009

A165685 Dimension of the space of Siegel cusp forms of genus 2 and weight n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0, 7, 0, 8, 0, 9, 0, 11, 1, 13, 0, 13, 1, 17, 1, 18, 1, 20, 2, 23, 3, 26, 2, 27, 4, 32, 4, 34, 5, 37, 6, 41, 8, 46, 7, 47, 10, 54, 11, 57, 12, 61, 14, 67, 17, 73, 16, 75, 21, 84, 22, 88, 24, 94, 27, 101, 31, 109, 31, 112
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Keywords

Examples

			a(35)=1 as the dimension of the space of Siegel cusp form of genus 2 and weight 35 is 1.
		

References

  • M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.

Crossrefs

Cf. A008615, A029143. A165684 gives only the even weights.

Programs

  • Mathematica
    N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231) /; Mod[k, 2] == 0; N1[k_] := 2^(-7)*3^(-3)*5^(-1)*(2 k^3 - 114 k^2 + 2018 k - 9051) /; Mod[k, 2] == 1; N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 325) /; Mod[k, 12] == 1; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 261) /; Mod[k, 12] == 3; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k + 53) /; Mod[k, 12] == 5; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 91) /; Mod[k, 12] == 7; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k - 27) /; Mod[k, 12] == 9;
    N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N2[k_] := 2^(-5)*3^(-3)*(17 k - 181) /; Mod[k, 12] == 11; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*229 /; Mod[k, 12] == 1; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*(-1131) /; Mod[k, 12] == 3; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*(-571) /; Mod[k, 12] == 5;
    N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*(-203) /; Mod[k, 12] == 7; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*(-123) /; Mod[k, 12] == 9; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*(-427) /; Mod[k, 12] == 11; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4;
    DimSk[k_] := If[k >= 7, N1[k] + N2[k] + N3[k] + N4[k], 0];
    Table[ DimSk[k], {k, 1, 100}]
    (* second program: *)
    init = {0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0};
    ker = {0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1};
    ans = LinearRecurrence[ker, init, 100];
    ans[[3]] = 0 ; ans (* Andy Huchala, Mar 03 2022 *)
  • Sage
    R. = PowerSeriesRing(ZZ, 100);
    p = x^26 + x^24 - x^21 - x^19 + x^18 - x^17 - x^14 - x^13 + x^10 + x^9 + x^8 + x^7 - x^3;
    q = x^27 - x^23 - x^22 - x^21 + x^18 + x^17 + x^16 - x^15 - x^12 + x^11 + x^10 + x^9 - x^6 - x^5 - x^4 + 1;
    (x^3 + p/q).list()[1:] # Andy Huchala, Mar 03 2022

Formula

G.f.: x^10 (1+x^2-x^5-x^7+x^10-x^15+x^20) / ((-1+x)^4 (1+x)^3 (1+2x^2+2x^4+x^6)^2 (1+x+x^4+x^7+x^8)). - Andy Huchala, Mar 03 2022
a(2n) = A165684(n) and a(2n+35) = A029143(n). - Andy Huchala, Mar 04 2022

Extensions

a(73) corrected by Andy Huchala, Mar 02 2022

A165686 Dimension of the space of Siegel cusp forms of genus 2 and weight 2k which are not Saito-Kurokawa lifts of forms of genus 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 8, 11, 12, 14, 16, 19, 20, 24, 26, 29, 32, 37, 38, 44, 47, 51, 56, 62, 64, 72, 76, 82, 88, 96, 99, 109, 115, 122, 130, 140, 144, 157, 164, 173, 183, 195, 201, 216, 225, 236, 248, 263, 270, 288, 299, 312, 327, 344, 353, 374
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

Keywords

Comments

Also the dimension of the largest Hecke-closed subspace of forms in S_k(Gamma_2) which satisfy the Ramanujan-Petersson conjecture. These forms are also characterized by the property that their (Andrianov) spinor zeta function does not have any pole.

Examples

			a(20)=1 because there is exactly one Siegel modular form of genus 2 and weight 20 which is not a lift of some form of genus 1.
		

References

  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhaeusser, 1985.
  • T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256(3), p. 323-340, 1981.
  • R. Weissauer, The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)

Crossrefs

Cf. A165684 for the full space of Siegel cusp forms. See also A029143, A027640, A165685.

Formula

For k > 1 we have a(k) = A165684(k) - A008615(2k-5).
Conjectured G.f.: -x^10*(x^7+x^6-x^2-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013
Showing 1-4 of 4 results.