A029618 Numbers in (3,2)-Pascal triangle (by row).
1, 3, 2, 3, 5, 2, 3, 8, 7, 2, 3, 11, 15, 9, 2, 3, 14, 26, 24, 11, 2, 3, 17, 40, 50, 35, 13, 2, 3, 20, 57, 90, 85, 48, 15, 2, 3, 23, 77, 147, 175, 133, 63, 17, 2, 3, 26, 100, 224, 322, 308, 196, 80, 19, 2, 3, 29, 126, 324, 546, 630, 504, 276, 99, 21, 2, 3, 32, 155, 450, 870
Offset: 0
Examples
Triangle begins as: 1; 3, 2; 3, 5, 2; 3, 8, 7, 2; 3, 11, 15, 9, 2; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
T:= function(n,k) if n=0 and k=0 then return 1; elif k=0 then return 3; elif k=n then return 2; else return T(n-1,k-1) + T(n-1,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
Maple
A029618 := proc(n,k) if k < 0 or k > n then 0; elif n = 0 then 1; elif k=0 then 3; elif k = n then 2; else procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 08 2015
-
Mathematica
T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 3, If[k==n, 2, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)
-
PARI
T(n,k) = if(n==0 && k==0, 1, if(k==0, 3, if(k==n, 2, T(n-1, k-1) + T(n-1, k) ))); \\ G. C. Greubel, Nov 12 2019
-
Sage
@CachedFunction def T(n, k): if (n==0 and k==0): return 1 elif (k==0): return 3 elif (k==n): return 2 else: return T(n-1,k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(n,0)=3, T(n,n)=2; n, k > 0. - Boris Putievskiy, Sep 04 2013
G.f.: (-1-x*y-2*x)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015
Comments