A029656 Numbers in the (2,1)-Pascal triangle A029653 that are different from 1.
2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 2, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 2, 23, 121, 385
Offset: 1
Examples
Triangle begins: 2; 2, 3; 2, 5, 4; 2, 7, 9, 5; 2, 9, 16, 14, 6; 2, 11, 25, 30, 20, 7; ...
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; triangle on page 6, numerators.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150)
- Eric Weisstein's World of Mathematics, Alternating Sign Matrix.
- D. Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
Programs
-
Mathematica
Table[(Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n, k] - Binomial[n, k + 1])/2, {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 29 2018 *)
Formula
From Thomas Baruchel, Jun 26 2018: (Start)
a(n,k) = (binomial(n+2,k+1) + binomial(n+1,k) + binomial(n,k) - binomial(n,k+1))/2.
a(n,k) = binomial(n-1,k-1) + binomial(n-1,k) + binomial(n,k-1) + binomial(n,k). (End)
Extensions
More terms from James Sellers