A029733 Numbers k such that k^2 is palindromic in base 16.
0, 1, 2, 3, 17, 34, 257, 273, 289, 305, 319, 514, 530, 546, 773, 1377, 4097, 4369, 4641, 8194, 8254, 8466, 8734, 9046, 51629, 65537, 65793, 66049, 66305, 69649, 69905, 70161, 70417, 73505, 73761, 74017, 74273, 76879, 92327, 131074
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..100
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Crossrefs
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), this sequence (b=16), A118651 (b=17).
Programs
-
Mathematica
n2palQ[n_]:=Module[{id=IntegerDigits[n^2,16]},id==Reverse[id]]; Select[ Range[ 0,150000],n2palQ] (* Harvey P. Dale, Mar 31 2018 *)
-
Python
from itertools import count, islice def A029733_gen(): # generator of terms return filter(lambda k: (s:=hex(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0)) A029733_list = list(islice(A029733_gen(),20)) # Chai Wah Wu, Jun 23 2022