A029747 Numbers of the form 2^k times 1, 3 or 5.
1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512, 640, 768, 1024, 1280, 1536, 2048, 2560, 3072, 4096, 5120, 6144, 8192, 10240, 12288, 16384, 20480, 24576, 32768, 40960, 49152, 65536, 81920, 98304, 131072, 163840, 196608
Offset: 1
Examples
128 = 2^7 * 1 is in the sequence as well as 160 = 2^5 * 5. - _David A. Corneth_, Sep 18 2020
Links
- David A. Corneth, Table of n, a(n) for n = 1..9963 (terms <= 10^1000)
- Index entries for linear recurrences with constant coefficients, signature (0,0,2).
Crossrefs
Programs
-
Mathematica
m = 200000; Select[Union @ Flatten @ Outer[Times, {1, 3, 5}, 2^Range[0, Floor[Log2[m]]]], # < m &] (* Amiram Eldar, Oct 15 2020 *)
-
PARI
is(n) = n>>valuation(n, 2) <= 5 \\ David A. Corneth, Sep 18 2020
-
Python
def A029747(n): if n<3: return n a, b = divmod(n,3) return 1<Chai Wah Wu, Apr 02 2025
Formula
a(n) = if n < 6 then n else 2*a(n-3). - Reinhard Zumkeller, Aug 23 2006
G.f.: (1+x+x^2)^2/(1-2*x^3). - R. J. Mathar, Mar 06 2010
Sum_{n>=1} 1/a(n) = 46/15. - Amiram Eldar, Oct 15 2020
Extensions
Edited by David A. Corneth and Peter Munn, Sep 18 2020
Comments