A029832 A discrete version of the Mangoldt function: if n is prime then ceiling(log(n)) else 0.
0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0
Offset: 1
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
- P. Ribenboim, Algebraic Numbers, p. 44.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65539
Programs
-
Mathematica
Table[If[PrimeQ[n],Ceiling[Log[n]],0],{n,120}] (* Harvey P. Dale, Aug 23 2019 *)
-
PARI
A029832(n) = if(!isprime(n),0,ceil(log(n))); \\ Antti Karttunen, Feb 06 2019
Extensions
More terms from Antti Karttunen, Feb 06 2019
Comments