cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029834 A discrete version of the Mangoldt function: if n is prime then floor(log(n)) else 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Keywords

Comments

The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
  • Paulo Ribenboim, Algebraic Numbers, p. 44.

Crossrefs

Programs

  • Mathematica
    Array[If[PrimeQ[#], Floor[Log[#]], 0] &, 80] (* Harvey P. Dale, Jul 24 2013 *)
  • PARI
    v=[]; for(n=1,150,v=concat(v, if(isprime(n),floor(log(n)),))); v
    
  • PARI
    A029834(n) = if(!isprime(n),0,floor(log(n))); \\ Antti Karttunen, Feb 06 2019

Extensions

More terms from Antti Karttunen, Feb 06 2019

A029833 A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0
Offset: 1

Views

Author

Keywords

Comments

The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
  • P. Ribenboim, Algebraic Numbers, p. 44.

Crossrefs

Programs

Extensions

More terms from Antti Karttunen, Feb 06 2019

A063529 a(n) = M(2^n-1), where M() is A029834, a discrete version of the Mangoldt function: if n is prime then floor(log(n)) else 0 and 2^n-1 is A000225.

Original entry on oeis.org

0, 1, 1, 0, 3, 0, 4, 0, 0, 0, 0, 0, 9, 0, 0, 0, 11, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 61, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Aug 01 2001

Keywords

Crossrefs

Programs

  • PARI
    j=[]; for(n=1,150,j=concat(j, if(isprime(2^n-1),floor(log(2^n-1)),))); j
Showing 1-3 of 3 results.