cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A029839 McKay-Thompson series of class 16B for the Monster group.

Original entry on oeis.org

1, 2, -1, -2, 3, 2, -4, -4, 5, 8, -8, -10, 11, 12, -15, -18, 22, 26, -29, -34, 38, 42, -51, -56, 66, 78, -85, -98, 109, 120, -139, -156, 176, 202, -222, -250, 279, 306, -346, -384, 429, 482, -530, -590, 650, 714, -797, -876, 972, 1080, -1180, -1304, 1431, 1562, -1728, -1892, 2078, 2290, -2496
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In [Klein and Fricke 1890], the g.f. A(q)/2 is denoted by mu. On page 613 special values given are mu(i infinity) = infinity, mu(0) = 1, mu(2) = -1 and on page 615 properties given are mu(omega+1) = -i mu(omega), mu(-1/omega) = (mu(omega)+1)/(mu(omega)-1). - Michael Somos, Nov 09 2014

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 + 3*x^4 + 2*x^5 - 4*x^6 - 4*x^7 + 5*x^8 + 8*x^9 + ...
T16B = 1/q + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + ...
		

Crossrefs

Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^b: this sequence (b=1), A029839 (b=2), A029840 (b=3), A029841 (b=4), A029842 (b=5), A029843 (b=6), A029844 (b=7).

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A, m}, If[n < 0, 0, A = 1; m = 1; While[m <= n, m *= 2; A = A /. x -> x^2; A = Sqrt[A + 4*x/A]]; SeriesCoefficient[A, {x, 0, n}]]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, Mar 12 2014, after PARI *)
    a[ n_] := SeriesCoefficient[ 2 q^(1/4) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    QP = QPochhammer; s = QP[q^2]^6/(QP[q]^2*QP[q^4]^4) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)^2))^2, n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A + 4*x/A)); polcoeff(A, n))};

Formula

Expansion of q times normalized Hauptmodul for Gamma(4) in powers of q^4.
Expansion of q^(1/4) * eta(q^2)^6 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [2, -4, 2, 0, ...].
G.f. A(x) satisfies: A(x)^2 = A(x^2) + 4*x / A(x^2). - Michael Somos, Mar 08 2004
G.f.: Product_{k>0} ((1 + x^(2*k-1)) / (1 + x^(2*k)))^2.
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^2 - u^2*v. - Michael Somos, May 14 2004
Given g.f. A(x), then B(q) = A(q^4) / (2*q) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Oct 04 2006
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = (u6 + u2)^2 - u1*u2*u3*u6. - Michael Somos, Oct 04 2006
Convolution inverse of A079006.
Expansion of q^(1/4) * 2 / k(q)^(1/2) in powers of Jacobi nome q where k() is the elliptic modulus.
Expansion of q^(1/2) * 2 * (1 + k'(q)) / k(q) in powers of q^2. - Michael Somos, Nov 09 2014
Expansion of phi(x) / psi(x^2) = phi(x)^2 / psi(x)^2 = psi(x)^2 / psi(x^2)^2 = phi(-x^2)^2 / psi(-x)^2 = chi(-x^2)^4 / chi(-x)^2 = chi(x)^2 * chi(-x^2)^2 = chi(x)^4 * chi(-x)^2 = f(x)^2 / f(-x^4)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of continued fraction 1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...)) in powers of x^4. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007096.
a(n) = (-1)^n * A082304(n). Convolution square is A029841. - Michael Somos, Jul 05 2014
From Peter Bala, Jan 09 2021: (Start)
A(q) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+1)) / Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)).
A(q) = ( 1 + q/(1 + (q + q^2)/(1 + q^3/(1 + (q^2 + q^4)/(1 + q^5/(1 + ... ))))) )^2. See Agarwal, p. 285.
A(q) = B(q)^2, where B(q) is the g.f. of A029838. (End)
abs(a(n)) ~ exp(Pi*sqrt(n)/2) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

Extensions

Additional comments from Michael Somos, Jul 11 2002

A029842 Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^5.

Original entry on oeis.org

1, 5, 5, -10, -10, 31, 20, -75, -40, 150, 84, -280, -165, 520, 290, -935, -495, 1595, 855, -2640, -1424, 4315, 2265, -6925, -3570, 10860, 5605, -16740, -8615, 25520, 12984, -38455, -19390, 57150, 28740, -83961, -42110, 122320
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: x^(5/8)*theta_2(sqrt(x))^5/theta_2(x)^5, where theta_() is the Jacobi theta function. - Ilya Gutkovskiy, Dec 04 2017

A029843 Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^6.

Original entry on oeis.org

1, 6, 9, -10, -24, 36, 65, -102, -153, 232, 327, -468, -663, 918, 1287, -1768, -2391, 3240, 4289, -5676, -7488, 9758, 12753, -16524, -21250, 27300, 34758, -44128, -55896, 70380, 88519, -110874, -138285, 172136, 213315
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: x^(3/4)*theta_2(sqrt(x))^6/theta_2(x)^6, where theta_() is the Jacobi theta function. - Ilya Gutkovskiy, Dec 04 2017

A029844 Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^7.

Original entry on oeis.org

1, 7, 14, -7, -42, 28, 133, -90, -357, 231, 833, -511, -1792, 1064, 3695, -2163, -7329, 4221, 13923, -7847, -25536, 14161, 45703, -25109, -80010, 43526, 136941, -73654, -229823, 122493, 379582, -200935, -617729, 324751
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: x^(7/8)*theta_2(sqrt(x))^7/theta_2(x)^7, where theta_() is the Jacobi theta function. - Ilya Gutkovskiy, Dec 04 2017

A187053 Expansion of (psi(x^2) / psi(x))^3 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 9, -22, 48, -99, 194, -363, 657, -1155, 1977, -3312, 5443, -8787, 13968, -21894, 33873, -51795, 78345, -117312, 174033, -255945, 373353, -540486, 776848, -1109040, 1573209, -2218198, 3109713, -4335840, 6014123, -8300811, 11402928
Offset: 0

Views

Author

Michael Somos, Mar 06 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 3*x + 9*x^2 - 22*x^3 + 48*x^4 - 99*x^5 + 194*x^6 - 363*x^7 + ...
G.f. = q^3 - 3*q^11 + 9*q^19 - 22*q^27 + 48*q^35 - 99*q^43 + 194*q^51 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ -x])^3, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^3, n))};

Formula

Expansion of q^(-3/8) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^3 in powers of q.
Euler transform of period 4 sequence [-3, 6, -3, 0, ...].
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^3.
Convolution inverse of A029840. Convolution cube of A083365. a(n) = (-1)^n * A001937(n).
a(n) ~ (-1)^n * 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A296043 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^n.

Original entry on oeis.org

1, 1, -1, -5, -1, 31, 65, -90, -641, -644, 3329, 11386, -1471, -87021, -164634, 317935, 1881471, 1418719, -11370760, -33937951, 17468929, 294971868, 468897758, -1304743033, -6275603903, -2804572819, 42665919997, 109181454826, -106020803386, -1063546684834, -1362993953395
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k - 1))/(1 + x^(2 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^n, {x, 0, n}], {n, 0, 30}]

A296067 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, -1, 0, 1, 3, -1, 0, 0, 1, 4, 0, -2, 1, 0, 1, 5, 2, -5, 3, 0, 0, 1, 6, 5, -8, 3, 2, -1, 0, 1, 7, 9, -10, -1, 9, -4, -1, 0, 1, 8, 14, -10, -10, 20, -7, -4, 2, 0, 1, 9, 20, -7, -24, 31, -2, -15, 5, 1, 0, 1, 10, 27, 0, -42, 36, 20, -40, 9, 8, -2, 0, 1, 11, 35, 12, -62, 28, 65, -75, 3, 27, -8, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k - 3)*x^2 + (1/6)*k*(k^2 - 9*k + 8)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 59*k - 18)*x^4 + (1/120)*k*(k^4 - 30*k^3 + 215*k^2 - 330*k + 144)*x^5 + ...
Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0, -1, -1,  0,   2,   5,  ...
0,  0, -2, -5,  -8, -10,  ...
0,  1,  3,  3,  -1, -10,  ...
0,  0,  2,  9,  20,  31,  ...
		

Crossrefs

Columns k=0..8 give A000007, A029838, A029839, A029840, A029841, A029842, A029843, A029844, A029845 (with offset 0).
Main diagonal gives A296043.
Cf. A296068.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i - 1))/(1 + x^(2 i)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.
G.f. of column k: (x^(1/8)*theta_2(sqrt(x))/theta_2(x))^k, where theta_() is the Jacobi theta function.

A296047 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.

Original entry on oeis.org

1, 1, -1, 1, 1, 0, 0, -2, 5, 0, -2, 0, 3, 5, -11, 5, 6, 9, -17, -2, 23, -3, -11, -25, 62, -11, -27, -27, 76, 20, -104, 10, 77, 101, -243, 58, 118, 147, -353, -25, 378, 48, -372, -298, 892, -165, -444, -621, 1524, -128, -1055, -559, 1869, 575, -2682, 84, 2054, 1979, -5325, 844, 2947
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 + x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.
Showing 1-8 of 8 results.