A029855 Number of rooted trees where root has degree 4.
1, 1, 3, 7, 19, 46, 124, 320, 858, 2282, 6161, 16647, 45352, 123861, 340000, 936098, 2586518, 7166394, 19911638, 55456892, 154814055, 433081632, 1213901668, 3408659401, 9587879987, 27011564035, 76212078500
Offset: 5
Keywords
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 53.
Links
- Washington Bomfim, Table of n, a(n) for n = 5..200
- Frank Ruskey, Combinatorial Generation Algorithm 4.26, p. 96
- Eric Weisstein's World of Mathematics, Frequency Representation
- Eric Weisstein's World of Mathematics, Rooted Tree
- Index entries for sequences related to rooted trees
Programs
-
Mathematica
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Drop[Take[CoefficientList[CycleIndex[SymmetricGroup[4],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],4] (* Geoffrey Critzer, Oct 14 2012, after code by Robert A. Russell in A000081 *)
-
PARI
max_n = 200; f=vector(max_n); \\ f[n] = A000081[n], n=1..max_n sum2(k) = {local(s); s=0; fordiv(k, d, s += d*f[d]); return(s)}; Init_f()={f[1]=1; for(n =1, max_n -2, s=0; for(k=1, n, s+=sum2(k)*f[n-k+1]); f[n+1]=s/n)}; S=0; P=[0,1,1,1,1,0]; visit4() = {i = 3; k = 2; p = P[2]; Pr = 1; while(1, while(P[i]==p, i++);c=i-k;Pr*=binomial(f[P[k]]+c-1, c); if(P[i] == 0, S += Pr; return); p = P[i]; k = i; i++)}; \\ F. Ruskey partition generator Part(n, k, s, t) = { P[t] = s; if((k == 1) || (n == k), visit4(), L = max(1, ceil((n - s)/(k - 1))); for(j = L, min(s, n-s-k+2), Part(n-s, k-1, j, t+1))); P[t] = 1;}; \\ a(n) = {S=0; n--; Part(2*n,4+1,n,1); return(S)} Init_f(); for(n=5, max_n, print(n, " ", a(n))) \\ b-file format \\ # Washington Bomfim, Jul 10 2012
Formula
a(n)= Sum_(P){ Prod_(1^a1 2^a2 3^a3 ...){ binomial(f(i)+a_i -1, a_i) } }, where P is the set of the partitions of n with four parts, and f = A000081. - Washington Bomfim, Jul 10 2012
a(n) ~ c * A051491^n / n^(3/2), where c = 0.036592912312268101787903577... - Vaclav Kotesovec, Dec 26 2020
Comments