cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029855 Number of rooted trees where root has degree 4.

Original entry on oeis.org

1, 1, 3, 7, 19, 46, 124, 320, 858, 2282, 6161, 16647, 45352, 123861, 340000, 936098, 2586518, 7166394, 19911638, 55456892, 154814055, 433081632, 1213901668, 3408659401, 9587879987, 27011564035, 76212078500
Offset: 5

Views

Author

Keywords

Comments

Fourth column of A033185. - Michael Somos, Aug 20 2018

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 53.

Crossrefs

Cf. A000226 (root degree 3), A000081, A033185.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Drop[Take[CoefficientList[CycleIndex[SymmetricGroup[4],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],4]  (* Geoffrey Critzer, Oct 14 2012, after code by Robert A. Russell in A000081 *)
  • PARI
    max_n = 200; f=vector(max_n);            \\ f[n] = A000081[n], n=1..max_n
    sum2(k) = {local(s); s=0; fordiv(k, d, s += d*f[d]); return(s)};
    Init_f()={f[1]=1;
    for(n =1, max_n -2, s=0; for(k=1, n, s+=sum2(k)*f[n-k+1]); f[n+1]=s/n)};
    S=0; P=[0,1,1,1,1,0];
    visit4() = {i = 3; k = 2; p = P[2]; Pr = 1;
    while(1, while(P[i]==p, i++);c=i-k;Pr*=binomial(f[P[k]]+c-1, c);
    if(P[i] == 0, S += Pr; return); p = P[i]; k = i; i++)};
                                             \\ F. Ruskey partition generator
    Part(n, k, s, t) = { P[t] = s;
    if((k == 1) || (n == k), visit4(), L = max(1, ceil((n - s)/(k - 1)));
    for(j = L, min(s, n-s-k+2), Part(n-s, k-1, j, t+1))); P[t] = 1;};
    \\
    a(n) = {S=0; n--; Part(2*n,4+1,n,1); return(S)}
    Init_f(); for(n=5, max_n, print(n, " ", a(n)))           \\ b-file format
    \\ # Washington Bomfim, Jul 10 2012

Formula

a(n)= Sum_(P){ Prod_(1^a1 2^a2 3^a3 ...){ binomial(f(i)+a_i -1, a_i) } }, where P is the set of the partitions of n with four parts, and f = A000081. - Washington Bomfim, Jul 10 2012
a(n) ~ c * A051491^n / n^(3/2), where c = 0.036592912312268101787903577... - Vaclav Kotesovec, Dec 26 2020