cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029857 Number of rooted trees with 3-colored leaves.

Original entry on oeis.org

3, 3, 9, 28, 94, 328, 1197, 4486, 17235, 67429, 267932, 1078003, 4383784, 17987897, 74385984, 309694232, 1297037177, 5460726214, 23098296648, 98113995068, 418335662448, 1789814398035, 7681522429474, 33061825858259, 142674028869587, 617180102839217
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; local d,j; if n<=1 then 3*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If[n<=1, 3*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 21 2016 *)

Formula

Shifts left under Euler transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.58859196701042554480382685... and c = 0.5102557157321640697473838... - Vaclav Kotesovec, Mar 29 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023