A029862 Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q.
1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763
Offset: 0
Keywords
Examples
G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ... G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ... From _Gus Wiseman_, Oct 27 2018: (Start) Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice: {{1}} {{1,1}} {{1},{2,2}} {{1,1},{2,2}} {{1},{2,2},{3,3}} {{1,2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3},{2,3}} {{1},{1}} {{2},{1,2}} {{1,2},{3,3}} {{1},{2,3},{4,4}} {{1},{2}} {{1},{2},{2}} {{1,2},{3,4}} {{1},{2,3},{4,5}} {{1},{2},{3}} {{1,3},{2,3}} {{1},{2,4},{3,4}} {{1},{1},{2,2}} {{2},{1,2},{3,3}} {{1},{1},{2,3}} {{2},{1,3},{2,3}} {{1},{2},{1,2}} {{4},{1,2},{3,4}} {{1},{2},{3,3}} {{1},{1},{3},{2,3}} {{1},{2},{3,4}} {{1},{2},{2},{3,3}} {{1},{3},{2,3}} {{1},{2},{2},{3,4}} {{1},{1},{2},{2}} {{1},{2},{3},{2,3}} {{1},{2},{3},{3}} {{1},{2},{3},{4,4}} {{1},{2},{3},{4}} {{1},{2},{3},{4,5}} {{1},{2},{4},{3,4}} {{1},{2},{2},{3},{3}} {{1},{2},{3},{4},{4}} {{1},{2},{3},{4},{5}} (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};
Formula
Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015
Comments