cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029862 Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q.

Original entry on oeis.org

1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)

Examples

			G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...
G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...
From _Gus Wiseman_, Oct 27 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:
  {{1}}  {{1,1}}    {{1},{2,2}}    {{1,1},{2,2}}      {{1},{2,2},{3,3}}
         {{1,2}}    {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3},{2,3}}
         {{1},{1}}  {{2},{1,2}}    {{1,2},{3,3}}      {{1},{2,3},{4,4}}
         {{1},{2}}  {{1},{2},{2}}  {{1,2},{3,4}}      {{1},{2,3},{4,5}}
                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{2,4},{3,4}}
                                   {{1},{1},{2,2}}    {{2},{1,2},{3,3}}
                                   {{1},{1},{2,3}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{4},{1,2},{3,4}}
                                   {{1},{2},{3,3}}    {{1},{1},{3},{2,3}}
                                   {{1},{2},{3,4}}    {{1},{2},{2},{3,3}}
                                   {{1},{3},{2,3}}    {{1},{2},{2},{3,4}}
                                   {{1},{1},{2},{2}}  {{1},{2},{3},{2,3}}
                                   {{1},{2},{3},{3}}  {{1},{2},{3},{4,4}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{2},{3},{3}}
                                                      {{1},{2},{3},{4},{4}}
                                                      {{1},{2},{3},{4},{5}}
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};

Formula

Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015