cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029887 A sum over scaled A000531 related to Catalan numbers C(n).

Original entry on oeis.org

1, 11, 82, 515, 2934, 15694, 80324, 397923, 1922510, 9105690, 42438076, 195165646, 887516252, 3997537980, 17857602568, 79200753059, 349051186494, 1529735010658, 6670733733260, 28959032959962, 125209652884756, 539384745200516, 2315840230811832, 9912689725127950
Offset: 0

Views

Author

Keywords

Comments

Related to planar maps? - see A000184. - N. J. A. Sloane, Mar 11 2007

Crossrefs

Programs

  • Magma
    [(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/3 - (n+2)*2^(2*n+1): n in [0..30]]; // Vincenzo Librandi, Mar 14 2014
    
  • Mathematica
    a[n_] := (2*n+1)*(2*n+3)*(2*n+5)*CatalanNumber[n]/3 - (n+2)*2^(2*n+1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 12 2014 *)
    CoefficientList[Series[(4 x - 1 + Sqrt[1 - 4 x])/(2 x (1 - 4 x)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 14 2014 *)
  • SageMath
    [(n+2)*((n+3)*(n+4)*catalan_number(n+3) - 3*4^(n+2))//24 for n in range(31)] # G. C. Greubel, Jul 18 2024

Formula

a(n) = 4^n * Sum_{k=0..n} A000531(k+1)/4^k.
a(n) = (1/3)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n) - (n+2)*2^(2*n+1).
a(n) = 4*a(n-1) + A000531(n+1).
G.f. c(x)/(1-4*x)^(5/2) = (2-c(x))/(1-4*x)^3, where c(x) = g.f. for Catalan numbers; also convolution of Catalan numbers with A002802.
G.f.: (4*x-1+sqrt(1-4*x))/(2*x*(1-4*x)^3). - Vincenzo Librandi, Mar 14 2014
From G. C. Greubel, Jul 18 2024: (Start)
a(n) = (1/24)*(n+2)*((n+3)*(n+4)*Catalan(n+3) - 3*4^(n+2)).
a(n) = (1/2)*A000184(n+2). (End)

Extensions

More terms from Vincenzo Librandi, Mar 14 2014