A258431
Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.
Original entry on oeis.org
0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0
-
A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
[A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
-
a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
end:
seq(a(n), n=0..30);
-
a[0]=0; a[1]=1; a[2]=5;
a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
-
def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
[A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023
Original entry on oeis.org
1, 15, 142, 1083, 7266, 44758, 259356, 1435347, 7663898, 39761282, 201483204, 1001098462, 4891910100, 23565178380, 112118316088, 527674017411, 2459747256138, 11368724035210, 52145629874100, 237541552456362
Offset: 0
-
[(Binomial(n+5,4)*Catalan(n+4) -5*4^(n+1)*Binomial(n+3,2))/10: n in [0..40]]; // G. C. Greubel, Jul 19 2024
-
Table[(Binomial[n+5,4]*CatalanNumber[n+4] -5*4^(n+1)*Binomial[n+3,2] )/10, {n,0,40}] (* G. C. Greubel, Jul 19 2024 *)
-
[(binomial(n+5,4)*catalan_number(n+4) - 5*4^(n+1)*binomial(n+3,2))/10 for n in range(41)] # G. C. Greubel, Jul 19 2024
A000184
Number of genus 0 rooted maps with 3 faces with n vertices.
Original entry on oeis.org
2, 22, 164, 1030, 5868, 31388, 160648, 795846, 3845020, 18211380, 84876152, 390331292, 1775032504, 7995075960, 35715205136, 158401506118, 698102372988, 3059470021316, 13341467466520, 57918065919924, 250419305769512, 1078769490401032, 4631680461623664, 19825379450255900, 84622558822506328, 360270317908904328, 1530148541536781488, 6484511936352543096, 27423786092731382000, 115756362341775227888
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
- Alois P. Heinz, Table of n, a(n) for n = 2..500
- Richard P. Stanley, CATALAN ADDENDUM, version of Jul 19, 2008, p. 24. [From _Jonathan Vos Post_, Aug 16 2008]
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
- W. T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 1968 64-74.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
- Notes
-
[n*((n+1)*(n+2)*Catalan(n+1) - 3*4^n)/12: n in [2..30]]; // G. C. Greubel, Jul 18 2024
-
a[n_] := 1/12*(2^(n+1)*(2*n+1)!!/(n-1)!-3*4^n*n); Table[a[n], {n, 2, 31}] (* Jean-François Alcover, Mar 12 2014 *)
-
[n*(2*(2*n+1)*binomial(2*n,n) - 3*4^n)//12 for n in range(2,30)] # G. C. Greubel, Jul 18 2024
Original entry on oeis.org
1, 3, 1, 10, 7, 1, 35, 38, 11, 1, 126, 187, 82, 15, 1, 462, 874, 515, 142, 19, 1, 1716, 3958, 2934, 1083, 218, 23, 1, 6435, 17548, 15694, 7266, 1955, 310, 27, 1, 24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1, 92378, 330818, 397923, 259356, 105102, 27866, 4867, 542, 35, 1
Offset: 1
Triangle begins as:
1;
3, 1;
10, 7, 1;
35, 38, 11, 1;
126, 187, 82, 15, 1;
462, 874, 515, 142, 19, 1;
1716, 3958, 2934, 1083, 218, 23, 1;
6435, 17548, 15694, 7266, 1955, 310, 27, 1;
24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1;
-
A046658:= func< n,k | Binomial(n,k)*(Binomial(n+1,2)*Catalan(n )/Catalan(k-1) -4^(n-k+1)*Binomial(k,2))/(n*(n-k+1)) >;
[A046658(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 28 2024
-
T[n_, k_]:= (1/2)*Binomial[n,k-1]*(Binomial[2*n,n]/Binomial[2*(k-1), k -1] - 4^(n-k+1)*(k-1)/n);
Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
-
def A046658(n,k): return (1/2)*binomial(n,k-1)*(binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n)
flatten([[A046658(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 28 2024
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
Showing 1-5 of 5 results.
Comments