A000531 From area of cyclic polygon of 2n + 1 sides.
1, 7, 38, 187, 874, 3958, 17548, 76627, 330818, 1415650, 6015316, 25413342, 106853668, 447472972, 1867450648, 7770342787, 32248174258, 133530264682, 551793690628, 2276098026922, 9373521044908, 38546133661492
Offset: 1
A384365 a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n+1,n-k).
1, 9, 67, 458, 2979, 18750, 115278, 696372, 4149283, 24452534, 142808922, 827780684, 4767638158, 27309438252, 155689424316, 883891633896, 4999703023395, 28188457323366, 158463492162594, 888473780483292, 4969653746436762, 27737520941131140, 154507945286680452
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[&+[ (k+1) * 3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Mathematica
Table[Sum[(k+1) * 3^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
PARI
a(n) = sum(k=0, n, (k+1)*3^k*binomial(2*n+1, n-k));
Formula
a(n) = [x^n] 1/((1-4*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 4^k * binomial(2*n-k-1,n-k).
G.f.: (1+sqrt(1-4*x))/( 2 * sqrt(1-4*x) * (2*sqrt(1-4*x)-1)^2 ).
D-finite with recurrence +27*n*a(n) +6*(-58*n+17)*a(n-1) +32*(46*n-37)*a(n-2) +1024*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ n * 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Aug 20 2025
A386955 a(n) = Sum_{k=0..n} (k+1) * 2^k * binomial(2*n+1,n-k).
1, 7, 42, 235, 1262, 6594, 33780, 170475, 850230, 4200130, 20585228, 100220718, 485164988, 2337145360, 11210274408, 53567616267, 255110184486, 1211287208346, 5735765695260, 27093982041546, 127699233939684, 600650635811532, 2819989050992472, 13216897613555550
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
Programs
-
Magma
[&+[(k+1) * 2^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 12 2025
-
Mathematica
Table[Sum[(k+1)*2^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 12 2025 *)
-
PARI
a(n) = sum(k=0, n, (k+1)*2^k*binomial(2*n+1, n-k));
Formula
a(n) = [x^n] 1/((1-3*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n-k-1,n-k).
G.f.: 2 * (1+sqrt(1-4*x))/( sqrt(1-4*x) * (3*sqrt(1-4*x)-1)^2 ).
a(n) ~ n * 3^(2*n) / 2^(n+1). - Vaclav Kotesovec, Aug 12 2025
A386956 a(n) = Sum_{k=0..n} (k+1) * 8^k * binomial(2*n+1,n-k).
1, 19, 282, 3763, 47294, 571950, 6733668, 77723187, 883589238, 9924844474, 110396411372, 1218075749934, 13348677037868, 145438914042172, 1576690043132376, 17018212213758771, 182983432175308710, 1960781840268630786, 20947171352106580284, 223169444039365834362
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[&+[(k+1) * 8^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Mathematica
Table[Sum[(k+1) * 8^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
PARI
a(n) = sum(k=0, n, (k+1)*8^k*binomial(2*n+1, n-k));
Formula
a(n) = [x^n] 1/((1-9*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 9^k * (-8)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 9^k * binomial(2*n-k-1,n-k).
G.f.: 2 * (1+sqrt(1-4*x))/( sqrt(1-4*x) * (9*sqrt(1-4*x)-7)^2 ).
A130265 Triangle read by rows: matrix product A007318 * A051340.
1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 2; 4, 5, 3; 8, 10, 10, 4; 16, 19, 23, 17, 5; 32, 36, 46, 46, 26, 6; 64, 69, 87, 102, 82, 37, 7;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >; [A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
-
Maple
A051340 := proc(n,k) if k = n then n+1 ; elif k <= n then 1; else 0; end if; end proc: A130265 := proc(n,k) add( binomial(n,j)*A051340(j,k),j=k..n) ; end proc: seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
-
Mathematica
T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
-
SageMath
def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1)) flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023
Formula
Binomial transform of A051340.
From G. C. Greubel, Mar 18 2023: (Start)
T(n, k) = (k+1)*binomial(n,k) + Sum_{j=1..n-k} binomial(n, j+k).
T(n, k) = (k+1)*binomial(n,k) + binomial(n,k+1)*Hypergeometric2F1([1, k-n+1], [k+2], -1).
T(2*n, n) = (1/2)*T(2*n+1, n) = A258431(n+1).
Sum_{k=0..n} T(n, k) = A001787(n+1).
Sum_{k=0..n-1} T(n, k) = A058877(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A084633(n). (End)
Extensions
Missing term inserted by R. J. Mathar, Aug 06 2016
Comments
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions