cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000531 From area of cyclic polygon of 2n + 1 sides.

Original entry on oeis.org

1, 7, 38, 187, 874, 3958, 17548, 76627, 330818, 1415650, 6015316, 25413342, 106853668, 447472972, 1867450648, 7770342787, 32248174258, 133530264682, 551793690628, 2276098026922, 9373521044908, 38546133661492
Offset: 1

Views

Author

Keywords

Comments

Expected number of matches remaining in Banach's original matchbox problem (counted when empty box is chosen), multiplied by 2^(2*n-1). - Michael Steyer, Apr 13 2001
A conjectured definition: Let 0 < a_1 < a_2 <...
a(n) = total weight of upsteps in all Dyck n-paths (A000108) when each upstep is weighted with its position in the path. For example, the Dyck path UDUUDUDD has upsteps in positions 1,3,4,6 and contributes 1+3+4+6=14 to the weight for Dyck 4-paths. The summand (n-k)*binomial(2*n+1, k) in the Maple formula below is the total weight of upsteps terminating at height n-k, 0<=k<=n-1. - David Callan, Dec 29 2006
Catalan transform of binomial transform of squares. - Philippe Deléham, Oct 31 2008
a(n) is also the number of walks of length 2n in the quarter plane starting and ending at the origin using steps {(1,1),(1,0),(-1,0), (-1,-1)} (which appear in Gessel's conjecture) in which the steps (1,0) and (-1,0) appear exactly once each. - Arvind Ayyer, Mar 02 2009
Equals the Catalan sequence, A000108, convolved with A002457: (1, 6, 30, 140, ...). - Gary W. Adamson, May 14 2009
Total number of occurrences of the pattern 213 (or 132) in all skew-indecomposable (n+2)-permutations avoiding the pattern 123. For example, a(1) = 1, since there is one occurrence of the pattern 213 in the set {213, 132}. - Cheyne Homberger, Mar 13 2013

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.

Crossrefs

Cf. A002457 (Banach's modified matchbox problem), A135404, A002457, A258431.

Programs

  • Maple
    f := proc(n) sum((n-k)*binomial(2*n+1,k),k=0..n-1); end;
  • Mathematica
    a[n_] := ((2n+1)!/n!^2-4^n)/2; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Dec 07 2011, after Pari *)
  • PARI
    a(n)=if(n<1,0,((2*n+1)!/n!^2-4^n)/2)

Formula

a(n) = ((2n+1)!/((n!)^2)-4^n)/2. - Simon Norton (simon(AT)dpmms.cam.ac.uk), May 14 2001
na(n) = (8n-2)a(n-1) - (16n-8)a(n-2), n>1. - Michael Somos, Apr 18 2003
E.g.f.: 1/2*((1+4*x)*exp(2*x)*BesselI(0, 2*x) + 4*x*exp(2*x)*BesselI(1, 2*x) - exp(4*x)). - Vladeta Jovovic, Sep 22 2003
a(n-1) = 4^n*sum_{k=0..n} binomial(2*k+1, k)*4^(-k) = (2*n+1)*(2*n+3)*C(n) - 2^(2*n+1) (C(n) = Catalan); g.f.: x*c(x)/(1-4*x)^(3/2), c(x): g.f. of Catalan numbers A000108. - Wolfdieter Lang
a(n) = Sum_{k=0..n} A039599(n,k)*k^2, for n>=1. - Philippe Deléham, Jun 10 2007
a(n) = Sum_{k=0..n} A106566(n,k)*A001788(k). - Philippe Deléham, Oct 31 2008
(Conjecture) a(n)=2^(2*n)*sum_{k=1..n} cos(k*Pi/(2*n+1))^2*n. - L. Edson Jeffery, Jan 21 2012

Extensions

Moebius reference from Michael Somos

A384365 a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n+1,n-k).

Original entry on oeis.org

1, 9, 67, 458, 2979, 18750, 115278, 696372, 4149283, 24452534, 142808922, 827780684, 4767638158, 27309438252, 155689424316, 883891633896, 4999703023395, 28188457323366, 158463492162594, 888473780483292, 4969653746436762, 27737520941131140, 154507945286680452
Offset: 0

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[ (k+1) * 3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[(k+1) * 3^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*3^k*binomial(2*n+1, n-k));
    

Formula

a(n) = [x^n] 1/((1-4*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 4^k * binomial(2*n-k-1,n-k).
G.f.: (1+sqrt(1-4*x))/( 2 * sqrt(1-4*x) * (2*sqrt(1-4*x)-1)^2 ).
D-finite with recurrence +27*n*a(n) +6*(-58*n+17)*a(n-1) +32*(46*n-37)*a(n-2) +1024*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ n * 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Aug 20 2025

A386955 a(n) = Sum_{k=0..n} (k+1) * 2^k * binomial(2*n+1,n-k).

Original entry on oeis.org

1, 7, 42, 235, 1262, 6594, 33780, 170475, 850230, 4200130, 20585228, 100220718, 485164988, 2337145360, 11210274408, 53567616267, 255110184486, 1211287208346, 5735765695260, 27093982041546, 127699233939684, 600650635811532, 2819989050992472, 13216897613555550
Offset: 0

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k+1) * 2^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 12 2025
  • Mathematica
    Table[Sum[(k+1)*2^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 12 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*2^k*binomial(2*n+1, n-k));
    

Formula

a(n) = [x^n] 1/((1-3*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n-k-1,n-k).
G.f.: 2 * (1+sqrt(1-4*x))/( sqrt(1-4*x) * (3*sqrt(1-4*x)-1)^2 ).
a(n) ~ n * 3^(2*n) / 2^(n+1). - Vaclav Kotesovec, Aug 12 2025

A386956 a(n) = Sum_{k=0..n} (k+1) * 8^k * binomial(2*n+1,n-k).

Original entry on oeis.org

1, 19, 282, 3763, 47294, 571950, 6733668, 77723187, 883589238, 9924844474, 110396411372, 1218075749934, 13348677037868, 145438914042172, 1576690043132376, 17018212213758771, 182983432175308710, 1960781840268630786, 20947171352106580284, 223169444039365834362
Offset: 0

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k+1) * 8^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[(k+1) * 8^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*8^k*binomial(2*n+1, n-k));
    

Formula

a(n) = [x^n] 1/((1-9*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 9^k * (-8)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 9^k * binomial(2*n-k-1,n-k).
G.f.: 2 * (1+sqrt(1-4*x))/( sqrt(1-4*x) * (9*sqrt(1-4*x)-7)^2 ).

A130265 Triangle read by rows: matrix product A007318 * A051340.

Original entry on oeis.org

1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0

Author

Gary W. Adamson, May 18 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   2,  2;
   4,  5,  3;
   8, 10, 10,   4;
  16, 19, 23,  17,  5;
  32, 36, 46,  46, 26,  6;
  64, 69, 87, 102, 82, 37,  7;
		

Crossrefs

Programs

  • Magma
    A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >;
    [A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    A051340 := proc(n,k)
        if k = n then
            n+1 ;
        elif k <= n then
            1;
        else
            0;
        end if;
    end proc:
    A130265 := proc(n,k)
        add( binomial(n,j)*A051340(j,k),j=k..n) ;
    end proc:
    seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
  • Mathematica
    T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1))
    flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023

Formula

Binomial transform of A051340.
From G. C. Greubel, Mar 18 2023: (Start)
T(n, k) = (k+1)*binomial(n,k) + Sum_{j=1..n-k} binomial(n, j+k).
T(n, k) = (k+1)*binomial(n,k) + binomial(n,k+1)*Hypergeometric2F1([1, k-n+1], [k+2], -1).
T(2*n, n) = (1/2)*T(2*n+1, n) = A258431(n+1).
Sum_{k=0..n} T(n, k) = A001787(n+1).
Sum_{k=0..n-1} T(n, k) = A058877(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A084633(n). (End)

Extensions

Missing term inserted by R. J. Mathar, Aug 06 2016
Showing 1-5 of 5 results.