cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029935 a(n) = Sum_{d divides n} phi(d)*phi(n/d).

Original entry on oeis.org

1, 2, 4, 5, 8, 8, 12, 12, 16, 16, 20, 20, 24, 24, 32, 28, 32, 32, 36, 40, 48, 40, 44, 48, 56, 48, 60, 60, 56, 64, 60, 64, 80, 64, 96, 80, 72, 72, 96, 96, 80, 96, 84, 100, 128, 88, 92, 112, 120, 112, 128, 120, 104, 120
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of A000010 with itself. - R. J. Mathar, Aug 28 2015

Crossrefs

Programs

  • Maple
    with(numtheory): A029935 := proc(n) local i,j; j := 0; for i in divisors(n) do j := j+phi(i)*phi(n/i); od; j; end;
  • Mathematica
    A029935[n_]:=DivisorSum[n,EulerPhi[#]*EulerPhi[n/#]&]; Array[A029935, 50]
    f[p_, e_] := (e+1)*(p^e - p^(e-1)) - (e-1)*(p^(e-1) - p^(e-2)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    a(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, f[k,1]),
         h = prod(k=1, fsz, sqr(f[k,1]-1)*f[k,2] + sqr(f[k,1])-1));
      return(h*n\sqr(g));
    };
    vector(54, n, a(n))  \\ Gheorghe Coserea, Oct 23 2016
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*eulerphi(n/d)); \\ Michel Marcus, Oct 23 2016

Formula

From Vladeta Jovovic, Oct 30 2001: (Start)
Sum_{k=1..n} phi(gcd(n, k)).
Multiplicative with a(p^e) = (e+1)*(p^e - p^(e - 1)) - (e - 1)*(p^(e - 1) - p^(e - 2)). (End)
From Franklin T. Adams-Watters, Nov 19 2004: (Start)
Sum_{d|n} a(d) = A018804(n), Mobius transform of A018804.
Dirichlet g.f.: zeta(s-1)^2/zeta(s)^2. (End)
Equals row sums of triangle A143258. - Gary W. Adamson, Aug 02 2008
a(n) <= A000010(n) * A000005(n), with equality iff n = A005117(k) for some k. - Gheorghe Coserea, Oct 23 2016
Sum_{k=1..n} a(k) ~ 9*n^2 * ((2*log(n) + 4*gamma - 1)/Pi^4 - 24*Zeta'(2)/Pi^6), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019