A029953 Palindromic in base 6.
0, 1, 2, 3, 4, 5, 7, 14, 21, 28, 35, 37, 43, 49, 55, 61, 67, 74, 80, 86, 92, 98, 104, 111, 117, 123, 129, 135, 141, 148, 154, 160, 166, 172, 178, 185, 191, 197, 203, 209, 215, 217, 259, 301, 343, 385, 427, 434, 476, 518, 560, 602, 644, 651, 693, 735, 777, 819
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Magma
[n: n in [0..900] | Intseq(n, 6) eq Reverse(Intseq(n, 6))]; // Vincenzo Librandi, Sep 09 2015
-
Mathematica
f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,6], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
-
PARI
ispal(n,b=6)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
-
Python
from gmpy2 import digits from sympy import integer_log def A029953(n): if n == 1: return 0 y = 6*(x:=6**integer_log(n>>1,6)[0]) return int((c:=n-x)*x+int(digits(c,6)[-2::-1]or'0',6) if n
Chai Wah Wu, Jun 14 2024
Formula
Sum_{n>=2} 1/a(n) = 3.03303318... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments