A029954 Palindromic in base 7.
0, 1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 344, 400, 456
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Mathematica
f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,7], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *) pal7Q[n_]:=Module[{idn7=IntegerDigits[n,7]},idn7==Reverse[idn7]]; Select[ Range[0,500],pal7Q] (* Harvey P. Dale, Jul 30 2015 *)
-
PARI
ispal(n,b=7)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
-
Python
from gmpy2 import digits def palQgen(l,b): # generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1,l+1): for y in range(b**(x-1),b**x): s = digits(y,b) yield int(s+s[-2::-1],b) for y in range(b**(x-1),b**x): s = digits(y,b) yield int(s+s[::-1],b) A029954_list = list(palQgen(4,7)) # Chai Wah Wu, Dec 01 2014
-
Python
from gmpy2 import digits from sympy import integer_log def A029954(n): if n == 1: return 0 y = 7*(x:=7**integer_log(n>>1,7)[0]) return int((c:=n-x)*x+int(digits(c,7)[-2::-1]or'0',7) if n
Chai Wah Wu, Jun 14 2024
Formula
Sum_{n>=2} 1/a(n) = 3.1313768... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments