cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029956 Numbers that are palindromic in base 11.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 488, 499
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Cf. A002113 (base 10), A029957 (base 12).

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,11],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal11Q[n_]:=Module[{idn11=IntegerDigits[n,11]},idn11==Reverse[idn11]]; Select[Range[0,500],pal11Q] (* Harvey P. Dale, May 11 2015 *)
    Select[Range[0, 500], PalindromeQ[IntegerDigits[#, 11]] &] (* Michael De Vlieger, May 12 2017, Version 10.3 *)
  • PARI
    ispal(n,b)=my(tmp,d=log(n+.5)\log(b)-1);while(d,tmp=n%b;n\=b;if(n\b^d!=tmp,return(0));n=n%(b^d);d-=2;);d<0||n%(b+1)==0
    is(n)=ispal(n,11) \\ Charles R Greathouse IV, Aug 21 2012
    
  • PARI
    ispal(n,b=11)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 04 2020
    
  • Python
    from gmpy2 import digits
    from sympy import integer_log
    def A029956(n):
        if n == 1: return 0
        y = 11*(x:=11**integer_log(n>>1,11)[0])
        return int((c:=n-x)*x+int(digits(c,11)[-2::-1]or'0',11) if nChai Wah Wu, Jun 14 2024
  • Sage
    [n for n in (0..499) if Word(n.digits(11)).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Formula

Sum_{n>=2} 1/a(n) = 3.4369816... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020