A029956 Numbers that are palindromic in base 11.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 488, 499
Offset: 1
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Programs
-
Mathematica
f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,11],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *) pal11Q[n_]:=Module[{idn11=IntegerDigits[n,11]},idn11==Reverse[idn11]]; Select[Range[0,500],pal11Q] (* Harvey P. Dale, May 11 2015 *) Select[Range[0, 500], PalindromeQ[IntegerDigits[#, 11]] &] (* Michael De Vlieger, May 12 2017, Version 10.3 *)
-
PARI
ispal(n,b)=my(tmp,d=log(n+.5)\log(b)-1);while(d,tmp=n%b;n\=b;if(n\b^d!=tmp,return(0));n=n%(b^d);d-=2;);d<0||n%(b+1)==0 is(n)=ispal(n,11) \\ Charles R Greathouse IV, Aug 21 2012
-
PARI
ispal(n,b=11)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 04 2020
-
Python
from gmpy2 import digits from sympy import integer_log def A029956(n): if n == 1: return 0 y = 11*(x:=11**integer_log(n>>1,11)[0]) return int((c:=n-x)*x+int(digits(c,11)[-2::-1]or'0',11) if n
Chai Wah Wu, Jun 14 2024 -
Sage
[n for n in (0..499) if Word(n.digits(11)).is_palindrome()] # Peter Luschny, Sep 13 2018
Formula
Sum_{n>=2} 1/a(n) = 3.4369816... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments