A029960 Numbers that are palindromic in base 15.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Mathematica
f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *) Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
-
PARI
isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
-
Python
from sympy import integer_log from gmpy2 import digits def A029960(n): if n == 1: return 0 y = 15*(x:=15**integer_log(n>>1,15)[0]) return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if n
Chai Wah Wu, Jun 14 2024
Formula
Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments