cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333421 Primes that are palindromic in factorial base.

Original entry on oeis.org

3, 7, 11, 41, 127, 139, 173, 179, 191, 751, 811, 5113, 5167, 5419, 5443, 6581, 6659, 6737, 6761, 6833, 6863, 6911, 6959, 40609, 40897, 41047, 41479, 42061, 42349, 42499, 42643, 42787, 50549, 51131, 51419, 51563, 52289, 52433, 52583, 52727, 363361, 363481, 365473
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			3 is a term since it is a prime number and its factorial base representation is 11 which is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    max = 9; Select[Range[0, max! - 1], PrimeQ[#] && PalindromeQ @ IntegerDigits[#, MixedRadix[Range[max, 2, -1]]] &]

A230820 Table, read by antidiagonals, of palindromic primes in base b expressed in decimal.

Original entry on oeis.org

3, 2, 5, 2, 13, 7, 2, 3, 23, 17, 2, 3, 5, 151, 31, 2, 3, 31, 17, 173, 73, 2, 3, 5, 41, 29, 233, 107, 2, 3, 5, 7, 67, 59, 757, 127, 2, 3, 5, 71, 37, 83, 257, 937, 257, 2, 3, 5, 7, 107, 43, 109, 373, 1093, 313, 2, 3, 5, 7, 73, 157, 61, 701, 409, 1249, 443
Offset: 1

Views

Author

Robert G. Wilson v, Oct 30 2013

Keywords

Examples

			\r
b\
.2.3...5...7...17...31...73..107..127...257...313...443..1193..1453..1571.=A016041
.3.2..13..23..151..173..233..757..937..1093..1249..1429..1487..1667..1733.=A029971
.4.2...3...5...17...29...59..257..373...409...461...509...787...839...887.=A029972
.5.2...3..31...41...67...83..109..701...911..1091..1171..1277..1327..1667.=A029973
.6.2...3...5....7...37...43...61...67...191...197..1297..1627..1663..1699.=A029974
.7.2...3...5...71..107..157..257..271...307..2549..2647..2801..3347..3697.=A029975
.8.2...3...5....7...73...89...97..113...211...227...251...349...373...463.=A029976
.9.2...3...5....7..109..127..173..191...227...337...373...419...601...619.=A029977
10.2...3...5....7...11..101..131..151...181...191...313...353...373...383.=A002385
11.2...3...5....7..199..277..421..443...499...521...587...643...709...743.=A029978
12.2...3...5....7...11...13..157..181...193...229...241...277...761...773.=A029979
...
inf..2..3..5..7..11..13..17..19..23..29..31..37..41..43..47..53..59..61...=A000040
		

Crossrefs

Programs

  • Maple
    A230820 := proc(b,n)
        option remember;
        local a,dgs ;
        if n = 1 then
            if b = 2 then
                return 3;
            else
                return 2;
            end if;
        else
            for a from procname(b,n-1)+1 do
                if isprime(a) then
                    ispal := true ;
                    dgs := convert(a,base,b) ;
                    for i from 1 to nops(dgs)/2 do
                        if op(i,dgs) <> op(-i,dgs) then
                            ispal := false;
                        end if;
                    end do:
                    if ispal then
                        return a;
                    end if;
                end if;
            end do:
        end if;
    end proc:
    for b from 2 to 9 do
        for n from 1 to 9 do
            printf("%3d ",A230820(b,n)) ;
        end do:
        printf("\n") ;
    end do; # R. J. Mathar, Feb 16 2014
  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[ n, base]}, idn == Reverse@ idn]; Table[Select[Prime@Range@500, palQ[#, k + 1] &][[b - k + 1]], {b, 11}, {k, b, 1, -1}] // Flatten

A333424 Primes that are palindromes in primorial base.

Original entry on oeis.org

3, 7, 11, 31, 47, 211, 223, 229, 281, 293, 2311, 2347, 2383, 2843, 2879, 30091, 30181, 30211, 30307, 30367, 30427, 30493, 30553, 30643, 30829, 30859, 34871, 34961, 35051, 35117, 35267, 35363, 35393, 35423, 510751, 511711, 513067, 513307, 515143, 517459, 518179
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			3 is a term since it is a prime number and its representation in primorial base is 11 (1 * 2# + 1) which is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    max = 8; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Select[Range[nmax], PrimeQ[#] && PalindromeQ @ IntegerDigits[#, MixedRadix[bases]] &]

A182231 Primes that are palindromic in base 32.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 1153, 1217, 1249, 1409, 1601, 1697, 1889, 2017, 3203, 3299, 3331, 3491, 3779, 3907, 4003, 5189, 5381, 5413, 5477, 5573, 5669, 5701, 5861, 6053, 7207, 7559, 7591, 7687, 7879, 8039, 8167, 9257, 9769, 9833, 9929, 11467
Offset: 1

Views

Author

Alex Ratushnyak, Apr 19 2012

Keywords

Examples

			1153_10 = 141_32. - _Jon E. Schoenfield_, Apr 10 2021
		

Crossrefs

Programs

  • Mathematica
    b = 32; lst = {}; Do[p = Prime[n]; If[IntegerDigits[p, b] == Reverse[IntegerDigits[p, b]], AppendTo[lst, p]], {n, 2000}]; lst (* T. D. Noe, Apr 19 2012 *)
Showing 1-4 of 4 results.