A029987 Squares which are palindromes in base 4.
0, 1, 25, 289, 441, 4225, 5041, 6889, 66049, 74529, 78961, 100489, 1050625, 1113025, 16785409, 17313921, 17581249, 19368801, 26594649, 26822041, 27258841, 268468225, 272613121, 284428225, 297183121, 4295098369
Offset: 1
Examples
5^2 = 25 in base 4 is 121, which is a palindrome, hence 25 is in the sequence. 6^2 = 36 in base 4 is 210, which is not a palindrome, so 36 is not in the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..408
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Crossrefs
Cf. A029986.
Programs
-
Mathematica
palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Select[Range[1000]^2, palindromicQ[#, 4] &] (* Alonso del Arte, Mar 04 2017 *) Select[Range[0,70000]^2,IntegerDigits[#,4]==Reverse[IntegerDigits[#,4]]&] (* Harvey P. Dale, May 07 2022 *)
-
PARI
lista(nn) = for (n=0, nn, d = digits(n^2, 4); if (Vecrev(d) == d, print1(n^2, ", "))); \\ Michel Marcus, Mar 05 2017