A030018 Coefficients in 1/(1+P(x)), where P(x) is the generating function of the primes.
1, -2, 1, -1, 2, -3, 7, -10, 13, -21, 26, -33, 53, -80, 127, -193, 254, -355, 527, -764, 1149, -1699, 2436, -3563, 5133, -7352, 10819, -15863, 23162, -33887, 48969, -70936, 103571, -150715, 219844, -320973, 466641, -679232, 988627, -1437185, 2094446, -3052743
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..6124 (terms 0..1000 from Zak Seidov)
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Backhouse's Constant
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, -add(ithprime(n-i)*a(i), i=0..n-1)) end: seq(a(n), n=0..70); # Alois P. Heinz, Jun 13 2018
-
Mathematica
max = 50; P[x_] := 1 + Sum[Prime[n]*x^n, {n, 1, max}]; s = Series[1/P[x], {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Sep 24 2014 *)
-
PARI
v=[];for(n=1,50,v=concat(v,-prime(n)-sum(i=1,n-1,prime(i)*v[#v-i+1])));v \\ Derek Orr, Apr 28 2015
Formula
Apply inverse of "INVERT" transform to primes: INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).
a(n) = -prime(n) - Sum_{i=1..n-1} prime(i)*a(n-i), for n > 0. - Derek Orr, Apr 28 2015
a(n) = Sum_{k=0..n} (-1)^k * A340991(n,k). - Alois P. Heinz, Feb 01 2021
Comments