A030075 Squares which are palindromes in base 15.
0, 1, 4, 9, 16, 64, 144, 256, 361, 1024, 1521, 4096, 5776, 16384, 20736, 51076, 58081, 65536, 73441, 96721, 204304, 218089, 228484, 232324, 331776, 511225, 817216, 929296, 1048576, 3055504, 3268864, 3489424, 5308416, 7033104
Offset: 1
Examples
8^2 = 64, which in base 15 is 44, and that's palindromic, so 64 is in the sequence. 9^2 = 81, which in base 15 is 56. Since that's not palindromic, 81 is not in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..106
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Crossrefs
Programs
-
Maple
N:= 10^10: # to get all entries <= N count:= 0: for x from 0 to floor(sqrt(N)) do y:= x^2; L:= convert(y,base,15); if ListTools[Reverse](L) = L then count:= count+1; A[count]:= y; fi od: seq(A[i],i=1..count); # Robert Israel, Jul 24 2014
-
Mathematica
palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[Range[0, 2700]^2, palQ[#, 15] &] (* Harvey P. Dale, Apr 23 2011 *)
-
PARI
isok(n) = my(d=digits(n,15)); issquare(n) && (d == Vecrev(d)); \\ Michel Marcus, Oct 21 2016