A030102 Base-3 reversal of n (written in base 10).
0, 1, 2, 1, 4, 7, 2, 5, 8, 1, 10, 19, 4, 13, 22, 7, 16, 25, 2, 11, 20, 5, 14, 23, 8, 17, 26, 1, 28, 55, 10, 37, 64, 19, 46, 73, 4, 31, 58, 13, 40, 67, 22, 49, 76, 7, 34, 61, 16, 43, 70, 25, 52, 79, 2, 29, 56, 11, 38, 65, 20, 47, 74, 5, 32, 59, 14, 41, 68, 23, 50, 77, 8, 35, 62, 17, 44, 71
Offset: 0
Examples
a(17) = 25 because 17 in base 3 is 122, and backwards that is 221, which is 25 in base 10. a(18) = 2 because 18 in base 3 is 200, and backwards that is 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences
- Lukas Spiegelhofer, A digit reversal property for an analogue of Stern's sequence, arXiv:1709.05651 [math.NT], 2017. See Theorem 1.1.
Crossrefs
Programs
-
Haskell
a030102 = foldl (\v d -> 3 * v + d) 0 . a030341_row -- Reinhard Zumkeller, Dec 16 2013
-
Maple
a030102:= proc(n) option remember; local y; y:= n mod 3; 3^ilog[3](n)*y + procname((n-y)/3) end proc: for i from 0 to 2 do a030102(i):= i od: seq(a030102(i),i=0..100); # Robert Israel, Dec 24 2015 # alternative A030102 := proc(n) local r ; r := ListTools[Reverse](convert(n,base,3)) ; add(op(i,r)*3^(i-1),i=1..nops(r)) ; end proc: # R. J. Mathar, May 28 2016
-
Mathematica
A030102[n_] := FromDigits[Reverse@IntegerDigits[n, 3], 3] (* JungHwan Min, Dec 23 2015 *) FromDigits[#,3]&/@(Reverse/@IntegerDigits[Range[0,80],3]) (* Harvey P. Dale, Feb 05 2020 *)
-
PARI
a(n,b=3)=subst(Polrev(base(n,b)),x,b) /* where */ base(n,b)={my(a=[n%b]);while(0
M. F. Hasler, Nov 04 2011 -
PARI
a(n) = fromdigits(Vecrev(digits(n, 3)), 3); \\ Michel Marcus, Oct 10 2017
Formula
a(n) = t(n,0) with t(n,r) = if n=0 then r else t(floor(n/3),r*3+(n mod 3)). - Reinhard Zumkeller, Mar 04 2010
G.f. G(x) satisfies: G(x) = (1+x+x^2)*G(x^3) - (1+2*x)*(x + 2*Sum_{m>=0} 3^m*x^(3^(m+1)+1)/(x^3-1). - Robert Israel, Dec 24 2015