cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030103 Base 4 reversal of n (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 1, 17, 33, 49, 5, 21, 37, 53, 9, 25, 41, 57, 13, 29, 45, 61, 2, 18, 34, 50, 6, 22, 38, 54, 10, 26, 42, 58, 14, 30, 46, 62, 3, 19, 35, 51, 7, 23, 39, 55, 11, 27, 43, 59, 15, 31, 47, 63, 1, 65, 129, 193, 17, 81, 145, 209, 33, 97, 161
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a030103 n = foldl (\v d -> 4*v + d) 0 $ unfoldr dig n where
        dig x = if x == 0 then Nothing else Just $ swap $ divMod x 4
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Mathematica
    IntegerReverse[Range[0, 100], 4] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n,b=4)=subst(Polrev(base(n,b)),x,b) /* where */
    base(n,b)={my(a=[n%b]);while(0M. F. Hasler, Nov 04 2011
    (MIT/GNU Scheme)
    (define (A030103 n) (if (zero? n) n (let ((uplim (+ (A000523 n) (- 1 (modulo (A000523 n) 2))))) (add (lambda (i) (* (bit_i n (+ i (expt -1 i))) (expt 2 (- uplim i)))) 0 uplim))))
    (define (bit_i n i) (modulo (floor->exact (/ n (expt 2 i))) 2))
    ;; The functional add implements sum_{i=lowlim..uplim} intfun(i):
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; Antti Karttunen, Oct 30 2013