cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A264994 Bijective base-4 reverse: a(0) = 0; for n >= 1, a(n) = A030103(A065883(n)) * A234957(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 13, 8, 6, 10, 14, 12, 7, 11, 15, 16, 17, 33, 49, 20, 21, 37, 53, 36, 25, 41, 57, 52, 29, 45, 61, 32, 18, 34, 50, 24, 22, 38, 54, 40, 26, 42, 58, 56, 30, 46, 62, 48, 19, 35, 51, 28, 23, 39, 55, 44, 27, 43, 59, 60, 31, 47, 63, 64, 65, 129, 193, 68, 81, 145, 209, 132, 97, 161, 225, 196, 113, 177, 241, 80, 69
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Self-inverse permutation of nonnegative integers.

Crossrefs

Cf. A264993 (a(3n)/3), A265335 (a(5n)/5).
Cf. also A057889 (base-2), A263273 (base-3), A264995 (base-5), A264979 (base-9).

Programs

Formula

a(0) = 0; for n >= 1, a(n) = A030103(A065883(n)) * A234957(n).
Other identities. For all n >= 0:
a(4*n) = 4*a(n).

A004086 Read n backwards (referred to as R(n) in many sequences).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 4, 14, 24, 34, 44, 54, 64, 74, 84, 94, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 6, 16, 26, 36, 46, 56, 66, 76, 86, 96, 7, 17, 27, 37, 47
Offset: 0

Views

Author

Keywords

Comments

Also called digit reversal of n.
Leading zeros (after the reversal has taken place) are omitted. - N. J. A. Sloane, Jan 23 2017

Crossrefs

Programs

  • Haskell
    a004086 = read . reverse . show  -- Reinhard Zumkeller, Apr 11 2011
    
  • J
    |.&.": i.@- 1e5 NB. Stephen Makdisi, May 14 2018
  • Maple
    read transforms; A004086 := digrev; #cf "Transforms" link at bottom of page
    A004086:=proc(n) local s,t; if n<10 then n else s:=irem(n,10,'t'); while t>9 do s:=s*10+irem(t,10,'t') od: s*10+t fi end; # M. F. Hasler, Jan 29 2012
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n]]], {n, 0, 75}]
    IntegerReverse[Range[0,80]](* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2018 *)
  • PARI
    dig(n) = {local(m=n,r=[]); while(m>0,r=concat(m%10,r);m=floor(m/10));r}
    A004086(n) = {local(b,m,r);r=0;b=1;m=dig(n);for(i=1,matsize(m)[2],r=r+b*m[i];b=b*10);r} \\ Michael B. Porter, Oct 16 2009
    
  • PARI
    A004086(n)=fromdigits(Vecrev(digits(n))) \\ M. F. Hasler, Nov 11 2010, updated May 11 2015, Sep 13 2019
    
  • Python
    def A004086(n):
        return int(str(n)[::-1]) # Chai Wah Wu, Aug 30 2014
    

Formula

For n > 0, a(a(n)) = n iff n mod 10 != 0. - Reinhard Zumkeller, Mar 10 2002
a(n) = d(n,0) with d(n,r) = r if n=0, otherwise d(floor(n/10), r*10+(n mod 10)). - Reinhard Zumkeller, Mar 04 2010
a(10*n+x) = x*10^m + a(n) if 10^(m-1) <= n < 10^m and 0 <= x <= 9. - Robert Israel, Jun 11 2015

Extensions

Extended by Ray Chandler, Dec 30 2004

A255689 Convert n to base 4, move the most significant digit to the least significant one and convert back to base 10.

Original entry on oeis.org

0, 1, 2, 3, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 1, 5, 9, 13, 17, 21, 25
Offset: 0

Views

Author

Paolo P. Lava, Mar 02 2015

Keywords

Comments

a(4*n) = 1.
Fixed points of the transform are listed in A048329.

Examples

			11 in base 4 is 23: moving the most significant digit as the least significant one we have 32 that is 14 in base 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n; print(0);
    for n from 1 to q do
    a:=convert(n,base,h); b:=[]; for k from 1 to nops(a)-1 do b:=[op(b),a[k]]; od; a:=[a[nops(a)],op(b)];
    a:=convert(a,base,h,10); b:=0; for k from nops(a) by -1 to 1 do b:=10*b+a[k]; od;
    print(b); od; end: P(10^4,4);
  • Mathematica
    roll[n_, b_] := Block[{w = IntegerDigits[n, b]}, Append[Rest@ w, First@ w]]; b = 4; FromDigits[#, b] & /@ (roll[#, b] & /@ Range[0, 70]) (* Michael De Vlieger, Mar 04 2015 *)
    Table[FromDigits[RotateLeft[IntegerDigits[n,4]],4],{n,0,70}] (* Harvey P. Dale, Aug 07 2015 *)
  • Python
    def A255689(n):
        x=A007090(n)
        return int (x[1:]+x[0],4) # Indranil Ghosh, Feb 08 2017

A035524 Reverse and add (in base 4).

Original entry on oeis.org

1, 2, 4, 5, 10, 20, 25, 50, 85, 170, 340, 425, 850, 1385, 3070, 6140, 10225, 15335, 29410, 65135, 129070, 317675, 1280860, 2163725, 3999775, 7999550, 20321515, 81946460, 138412045, 255852575, 511705150, 1300234475, 5242880860
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035522.
Cf. A030103.

Programs

  • Haskell
    a035524 n = a035524_list !! n
    a035524_list = iterate a055948 1
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Mathematica
    nxt4[n_]:=Module[{idn4=IntegerDigits[n,4]},FromDigits[idn4+ Reverse[idn4], 4]]; NestList[nxt4,1,40] (* Harvey P. Dale, May 02 2011 *)
  • Python
    def reversedigits(n, b=10): # reverse digits of n in base b
        x, y = n, 0
        while x >= b:
            x, r = divmod(x, b)
            y = b*y + r
        return b*y + x
    A035524_list, l = [1], 1
    for _ in range(50):
        l += reversedigits(l,4)
        A035524_list.append(l)

Formula

a(n+1) = A055948(a(n)), a(0) = 1. [Reinhard Zumkeller, Oct 10 2011]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 22 2000

A055948 n + reversal of base 4 digits of n (written in base 10).

Original entry on oeis.org

0, 2, 4, 6, 5, 10, 15, 20, 10, 15, 20, 25, 15, 20, 25, 30, 17, 34, 51, 68, 25, 42, 59, 76, 33, 50, 67, 84, 41, 58, 75, 92, 34, 51, 68, 85, 42, 59, 76, 93, 50, 67, 84, 101, 58, 75, 92, 109, 51, 68, 85, 102, 59, 76, 93, 110, 67, 84, 101, 118, 75, 92, 109, 126, 65, 130, 195
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

If n has an even number of digits in base 4 then a(n) is a multiple of 5.

Crossrefs

Cf. A035524 (iterated).

Programs

  • Haskell
    a055948 n = n + a030103 n
    -- Reinhard Zumkeller, Oct 10 2011
  • Mathematica
    Table[n+FromDigits[Reverse[IntegerDigits[n,4]],4],{n,0,70}] (* Harvey P. Dale, Nov 24 2021 *)

Formula

a(n) = n + A030103(n).

A048703 Numbers which in base 4 are palindromes and have an even number of digits.

Original entry on oeis.org

0, 5, 10, 15, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 1025, 1105, 1185, 1265, 1285, 1365, 1445, 1525, 1545, 1625, 1705, 1785, 1805, 1885, 1965, 2045, 2050, 2130, 2210, 2290, 2310, 2390
Offset: 0

Views

Author

Antti Karttunen, Mar 07 1999

Keywords

Comments

In quaternary base (base 4) the terms look like 0, 11, 22, 33, 1001, 1111, 1221, 1331, 2002, 2112, 2222, 2332, 3003, 3113, 3223, 3333, 100001, 101101, 102201, ..., which is a subsequence of A118595.
Zero is included as a(0) because we can consider it as having zero digits after leading zeros have been excluded.

Examples

			Each a(n) is obtained by concatenating the original base-4 expansion of n (which comes to the left hand, i.e., the most significant side) with its mirror-image (which comes to the right hand, i.e., the least significant side). For example, for a(4) we have 4 = '10' in base 4, which concatenated with its reversal '01' yields '1001', which when converted back to decimal yields 1*64 + 0*16 + 0*4 + 1*1 = 65, thus a(4)=65.
		

Crossrefs

Subsequence of A014192 (all numbers which are palindromes in base 4, including also those of odd number of digits).
Cf. also A048704 (this sequence divided by 5), A048701 (binary palindromes of even length), A055948, A110591, A118595, A030103, A007090, A000302.

Programs

  • Maple
    A048703(n) := (n) -> (2^(floor_log_2_coarse(n)+1))*n + sum('(bit_i(n, i+((-1)^i))*(2^(floor_log_2_coarse(n)-i)))', 'i'=0..floor_log_2_coarse(n));
    bit_i := (x,i) -> `mod`(floor(x/(2^i)),2);
    # Following is like floor_log_2 but even results are incremented by one:
    floor_log_2_coarse := proc(n) local nn,i: nn := n; for i from -1 to n do if(0 = nn) then RETURN(i+(1-(i mod 2))); fi: nn := floor(nn/2); od: end:
  • Mathematica
    q[n_] := EvenQ[IntegerLength[n, 4]] && PalindromeQ[IntegerDigits[n, 4]]; Select[Range[0, 2400, 5], q] (* Amiram Eldar, May 27 2024 *)
  • Python
    def A048703(n):
        s = bin(n-1)[2:]
        if len(s) % 2: s = '0'+s
        t = [s[i:i+2] for i in range(0,len(s),2)]
        return int(''.join(t+t[::-1]),2) # Chai Wah Wu, Feb 26 2021

Formula

a(0) = 0, and for n >= 1, a(n) = A030103(n) + (n * A000302(A110591(n))). - Antti Karttunen, Oct 30 2013
a(n) = 5*A048704(n). [This is just a consequence of the definition of A048704.] - Antti Karttunen, Jul 25 2013

A255589 Convert n to base 4, move the least significant digit to the most significant one and convert back to base 10.

Original entry on oeis.org

0, 1, 2, 3, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55, 8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59, 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63, 16, 80, 144, 208, 17, 81
Offset: 0

Views

Author

Paolo P. Lava, Mar 02 2015

Keywords

Comments

Fixed points of the transform are listed in A048329.

Examples

			11 in base 4 is 23: moving the least significant digit to the most significant one we have 32 that is 14 in base 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n; print(0);
    for n from 1 to q do
    a:=convert(n,base,h); b:=[]; for k from 2 to nops(a) do b:=[op(b),a[k]]; od; a:=[op(b),a[1]];
    a:=convert(a,base,h,10); b:=0; for k from nops(a) by -1 to 1 do b:=10*b+a[k]; od;
    print(b); od; end: P(10^4,4);
  • Mathematica
    roll[n_, b_] := Block[{w = IntegerDigits[n, b]}, Prepend[Most@ w, Last@ w]]; b = 4; FromDigits[#, b] & /@ (roll[#, b] & /@ Range[0, 69]) (* Michael De Vlieger, Mar 04 2015 *)
    Array[FromDigits[RotateRight[IntegerDigits[#,4]],4]&,70,0] (* Harvey P. Dale, Mar 01 2016 *)
  • Python
    def A255589(n):
        x=str(A007090(n))
        return int(x[-1]+x[:-1],4) # Indranil Ghosh, Feb 03 2017

Formula

a(4*k) = k.
a(4^k) = 4^(k-1).

A346113 Base-10 numbers k whose number of divisors equals the number of divisors in R(k), where k is written in all bases from base-2 to base-10 and R(k), the digit reversal of k, is read as a number in the same base.

Original entry on oeis.org

1, 9077, 10523, 10838, 30182, 58529, 73273, 77879, 83893, 244022, 303253, 303449, 304853, 329893, 332249, 334001, 334417, 335939, 336083, 346741, 374617, 391187, 504199, 512695, 516982, 595274, 680354, 687142, 758077, 780391, 792214, 854669, 946217, 948539, 995761, 1008487, 1377067, 1389341
Offset: 1

Views

Author

Scott R. Shannon, Jul 05 2021

Keywords

Comments

There are 633 terms below 50 million and 1253 terms below 100 million. All of those have tau(k), the number of divisors of k, equal to 1, 2, 4, 8 or 16. The first term where tau(k) = 2 is n = 93836531, a prime, which is also the first term of A136634. All terms in A136634 will appear in this sequence, as will all terms in A228768(n) for n>=10. The first term with tau(k) = 4 is 9077, the first with tau(k) = 8 is 595274, and the first with tau(k) = 16 is 5170182. It is possible tau(k) must equal 2^i, with i>=0, although this is unknown.
All known terms are squarefree. - Michel Marcus, Jul 07 2021

Examples

			9077 is a term as the number of divisors of 9077 = tau(9077) = 4, and this equals the number of divisors of R(9077) when written and then read as a base-j number, with 2 <= j <= 10. See the table below for k = 9077.
.
  base | k_base         | R(k_base)      | R(k_base)_10  | tau(R(k_base)_10)
----------------------------------------------------------------------------------
   2   | 10001101110101 | 10101110110001 | 11185         | 4
   3   | 110110012      | 210011011      | 15421         | 4
   4   | 2031311        | 1131302        | 6002          | 4
   5   | 242302         | 203242         | 6697          | 4
   6   | 110005         | 500011         | 38887         | 4
   7   | 35315          | 51353          | 12533         | 4
   8   | 21565          | 56512          | 23882         | 4
   9   | 13405          | 50431          | 33157         | 4
  10   | 9077           | 7709           | 7709          | 4
		

Crossrefs

Cf. A136634 (prime terms), A228768.
Subsequence of A062895.

Programs

  • Mathematica
    Select[Range@100000,Length@Union@DivisorSigma[0,Join[{s=#},FromDigits[Reverse@IntegerDigits[s,#],#]&/@Range[2,10]]]==1&] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
  • PARI
    isok(k) = {my(t= numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ Michel Marcus, Jul 06 2021

A191780 Triangle G(n,k): the value of n written in base k with digits reversed (but written here in base 10) for 2 <= k <= n.

Original entry on oeis.org

1, 3, 1, 1, 4, 1, 5, 7, 5, 1, 3, 2, 9, 6, 1, 7, 5, 13, 11, 7, 1, 1, 8, 2, 16, 13, 8, 1, 9, 1, 6, 21, 19, 15, 9, 1, 5, 10, 10, 2, 25, 22, 17, 10, 1, 13, 19, 14, 7, 31, 29, 25, 19, 11, 1, 3, 4, 3, 12, 2, 36, 33, 28, 21, 12, 1, 11, 13, 7, 17, 8, 43, 41, 37, 31, 23, 13, 1, 7, 22, 11, 22, 14, 2, 49, 46, 41, 34, 25, 14, 1, 15, 7, 15, 3
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Aug 02 2011

Keywords

Examples

			The triangle starts
  1;
  3, 1;
  1, 4, 1;
  5, 7, 5, 1;
  3, 2, 9, 6, 1;
		

Crossrefs

Cf. A007088..A007095, A030101 (column k=2), A030102 (column k=3), A030103 (column k=4).

Programs

  • Maple
    A191780 := proc(n,k) d := ListTools[Reverse](convert(n,base,k)) ; add( op(i,d)*k^(i-1),i=1..nops(d)) ;
    end proc: # R. J. Mathar, Aug 26 2011
  • Mathematica
    G[n_, k_] := IntegerDigits[n, k] // Reverse // FromDigits[#, k]&; Table[ G[n, k], {n, 2, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Feb 10 2018 *)

Extensions

Corrected by R. J. Mathar, Aug 26 2011

A055949 n - reversal of base 4 digits of n (written in base 10).

Original entry on oeis.org

0, 0, 0, 0, 3, 0, -3, -6, 6, 3, 0, -3, 9, 6, 3, 0, 15, 0, -15, -30, 15, 0, -15, -30, 15, 0, -15, -30, 15, 0, -15, -30, 30, 15, 0, -15, 30, 15, 0, -15, 30, 15, 0, -15, 30, 15, 0, -15, 45, 30, 15, 0, 45, 30, 15, 0, 45, 30, 15, 0, 45, 30, 15, 0, 63, 0, -63, -126, 51, -12, -75, -138, 39, -24, -87, -150, 27, -36, -99, -162, 75, 12, -51
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

a(n) is a multiple of 3.

Examples

			For n = 6, the reversal of base 4 digits of n (written in base 10) is 9. So, a(6) = 6 - 9 = -3. - _Indranil Ghosh_, Feb 01 2017
		

Crossrefs

Programs

  • Mathematica
    Table[n-FromDigits[Reverse[IntegerDigits[n,4]],4],{n,0,90}] (* Harvey P. Dale, Aug 22 2011 *)

Formula

a(n) = n - A030103(n).
Showing 1-10 of 10 results.