A030111 Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n).
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 3, 6, 4, 5, 1, 1, 4, 6, 10, 5, 6, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1, 7, 21, 56, 70, 126, 84, 120, 45, 55, 11, 12, 1
Offset: 1
Examples
1; 1 1; 2 1 1; 2 3 1 1; 3 3 4 1 1; 3 6 4 5 1 1; ...
Links
- Indranil Ghosh, Rows 0..125, flattened
Crossrefs
Cf. A066170.
Programs
-
Mathematica
Flatten[Table[Binomial[Floor[(n+k)/2],k],{n,20},{k,n}]] (* Harvey P. Dale, Jun 03 2014 *)
-
PARI
{T(n, k) = binomial((n+k)\2, k)}; /* Michael Somos, Jul 23 1999 */
-
PARI
printp(matrix(8,8,n,k,binomial((n+k)\2,k)))
-
PARI
for(n=1,7, for(k=1,n,print1(binomial((n+k)\2,k)); if(k==n,print1("; ")); print1(" ")))
Formula
G.f.: 1 / (1 - x - xy - x^2 + x^2y + x^3). - Ralf Stephan, Feb 13 2005
Sum(k=1, n, T(n, k)) = F(n+2)-1 where F(n) is the n-th Fibonacci number. - Benoit Cloitre, Oct 07 2002
Extensions
Description corrected by Michael Somos, Jul 23 1999
Corrected and extended by Harvey P. Dale, Jun 03 2014
Comments