cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030124 Complement (and also first differences) of Hofstadter's sequence A005228.

Original entry on oeis.org

2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Keywords

Comments

For any n, all integers k satisfying sum(i=1,n,a(i))+1Benoit Cloitre, Apr 01 2002
The asymptotic equivalence a(n) ~ n follows from the fact that the values disallowed in the present sequence because they occur in A005228 are negligible, since A005228 grows much faster than A030124. The next-to-leading term in the formula is calculated from the functional equation F(x) + G(x) = x, suggested by D. Wilson (cf. reference), where F and G are the inverse functions of smooth, increasing approximations f and f' of A005228 and A030124. It seems that higher order corrections calculated from this equation do not agree with the real behavior of a(n). - M. F. Hasler, Jun 04 2008
A225850(a(n)) = 2*n, cf. A167151. - Reinhard Zumkeller, May 17 2013

References

  • E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
  • D. R. Hofstadter, "Gödel, Escher, Bach: An Eternal Golden Braid", Basic Books, 1st & 20th anniv. edition (1979 & 1999), p. 73.

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a030124 n = a030124_list !! n
    a030124_list = figureDiff 1 [2..] where
       figureDiff n (x:xs) = x : figureDiff n' (delete n' xs) where n' = n + x
    -- Reinhard Zumkeller, Mar 03 2011
  • Mathematica
    (* h stands for Hofstadter's sequence A005228 *) h[1] = 1; h[2] = 3; h[n_] := h[n] = 2*h[n-1] - h[n-2] + If[ MemberQ[ Array[h, n-1], h[n-1] - h[n-2] + 1], 2, 1]; Differences[ Array[h, 69]] (* Jean-François Alcover, Oct 06 2011 *)
  • PARI
    {a=b=t=1;for(i=1,100, while(bittest(t,b++),); print1(b",");t+=1<M. F. Hasler, Jun 04 2008
    

Formula

a(n) = n + sqrt(2n) + o(n^(1/2)). - M. F. Hasler, Jun 04 2008 [proved in Jubin's paper].

Extensions

Changed offset to agree with that of A005228. - N. J. A. Sloane, May 19 2013