A030124 Complement (and also first differences) of Hofstadter's sequence A005228.
2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1
Keywords
References
- E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
- D. R. Hofstadter, "Gödel, Escher, Bach: An Eternal Golden Braid", Basic Books, 1st & 20th anniv. edition (1979 & 1999), p. 73.
Links
- T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n=1..10000
- Benoit Jubin, Asymptotic series for Hofstadter's figure-figure sequences, arXiv:1404.1791; J. Integer Sequences, 17 (2014), #14.7.2.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Eric Weisstein's World of Mathematics, Hofstadter Figure-Figure Sequence.
- D. W. Wilson, Asymptotics about A005228, post to the SeqFan mailing list (access restricted to subscribers), Jun 03 2008
- Index entries for sequences from "Goedel, Escher, Bach"
Crossrefs
Programs
-
Haskell
import Data.List (delete) a030124 n = a030124_list !! n a030124_list = figureDiff 1 [2..] where figureDiff n (x:xs) = x : figureDiff n' (delete n' xs) where n' = n + x -- Reinhard Zumkeller, Mar 03 2011
-
Mathematica
(* h stands for Hofstadter's sequence A005228 *) h[1] = 1; h[2] = 3; h[n_] := h[n] = 2*h[n-1] - h[n-2] + If[ MemberQ[ Array[h, n-1], h[n-1] - h[n-2] + 1], 2, 1]; Differences[ Array[h, 69]] (* Jean-François Alcover, Oct 06 2011 *)
-
PARI
{a=b=t=1;for(i=1,100, while(bittest(t,b++),); print1(b",");t+=1<M. F. Hasler, Jun 04 2008
Formula
a(n) = n + sqrt(2n) + o(n^(1/2)). - M. F. Hasler, Jun 04 2008 [proved in Jubin's paper].
Extensions
Changed offset to agree with that of A005228. - N. J. A. Sloane, May 19 2013
Comments