cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030133 a(n+1) is the sum of digits of (a(n) + a(n-1)).

Original entry on oeis.org

2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3
Offset: 0

Views

Author

Keywords

Comments

a(n) = A010888(A000032(n)). - Reinhard Zumkeller, Aug 20 2011
Similar to the digital roots of several Fibonacci sequences, this digital root sequence for Lucas numbers (A000032) has period 24 with digits summing to 117.
Decimal expansion of 23719213606865169775282 / 111111111111111111111111 = 0.[213472922461786527977538] (periodic). - Daniel Forgues, Feb 27 2017

Crossrefs

Programs

  • Haskell
    a030133 n = a030133_list !! n
    a030133_list =
       2 : 1 : map a007953 (zipWith (+) a030133_list $ tail a030133_list)
    -- Reinhard Zumkeller, Aug 20 2011
    
  • Mathematica
    Transpose[NestList[{Last[#],Total[IntegerDigits[Total[#]]]}&, {2,1}, 100]] [[1]] (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    V=[2,1];for(n=1,100,V=concat(V,sumdigits(V[n]+V[n+1])));V \\ Derek Orr, Feb 27 2017
    
  • PARI
    Vec((2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24)  + O(x^80)) \\ Colin Barker, Sep 25 2019

Formula

a(n+24) = a(n); a(A017593(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
G.f.: (2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24). - Colin Barker, Sep 25 2019