A030133 a(n+1) is the sum of digits of (a(n) + a(n-1)).
2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Haskell
a030133 n = a030133_list !! n a030133_list = 2 : 1 : map a007953 (zipWith (+) a030133_list $ tail a030133_list) -- Reinhard Zumkeller, Aug 20 2011
-
Mathematica
Transpose[NestList[{Last[#],Total[IntegerDigits[Total[#]]]}&, {2,1}, 100]] [[1]] (* Harvey P. Dale, Jul 25 2011 *)
-
PARI
V=[2,1];for(n=1,100,V=concat(V,sumdigits(V[n]+V[n+1])));V \\ Derek Orr, Feb 27 2017
-
PARI
Vec((2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24) + O(x^80)) \\ Colin Barker, Sep 25 2019
Formula
a(n+24) = a(n); a(A017593(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
G.f.: (2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24). - Colin Barker, Sep 25 2019
Comments