A030193 Let S = squares; a(0)=0; a(n) = smallest m such that m - a(i) is not in S for any i < n.
0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 34, 39, 44, 52, 57, 62, 65, 67, 72, 85, 95, 109, 119, 124, 127, 130, 132, 137, 142, 147, 150, 170, 177, 180, 182, 187, 192, 197, 204, 210, 215, 238, 243, 249, 255, 257, 260, 262, 267
Offset: 0
Keywords
Links
- Karl W. Heuer, Table of n, a(n) for n = 0..61299
- Code Golf Stack Exchange, First sequence with no square differences, 2021.
- Ben Green and Mehtaab Sawhney, Improved bounds for the Furstenberg-Sárközy theorem, arXiv:2411.17448 [math.NT], 2024. See p. 2.
- David Eppstein, Faster Evaluation of Subtraction Games, Proceedings of the 9th International Conference on Fun with Algorithms (FUN 2018), Leibniz International Proceedings in Informatics, arXiv:1804.06515 [cs.DS], 2018.
- S. W. Golomb, A mathematical investigation of games of "take-away", J. Combinatorial Theory, 1 (1966), 443-458.
- I. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), no. 3, 205-209.
- A. Sárközy, On difference sets of sequences of integers I, Acta Mathematica Academiae Scientiarum Hungarica, March 1978, Volume 31, Issue 1, pp 125-149.
- A. Sárközy, On difference sets of sequences of integers III, Acta Mathematica Academiae Scientiarum Hungarica, September 1978, Volume 31, Issue 3, pp 355-386.
- A. Sárközy, On the difference sets of sequences of integers II, Eotvos Sect. Math. 21(1978), 45-53.
Programs
-
Mathematica
moves[n_] := Table[n - i^2, {i, 1, Sqrt[n]}]; gana[n_] := Which[n == 0, False, True,!Select[moves[n], !gana[#] &] =={}]; Select[Range[155] - 1, ! gana[#] &] (* José María Grau Ribas, Jul 19 2013 *) Nest[Append[#, Block[{k = Last[#]}, While[AnyTrue[k - #, IntegerQ@ Sqrt@ # &], k++]; k]] &, {0}, 48] (* Michael De Vlieger, Jul 11 2018 *)
Extensions
More terms from Karl W. Heuer, Jun 13 2013
Comments