cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A030205 Expansion of q^(-1/2) * eta(q)^2 * eta(q^5)^2 in power of q.

Original entry on oeis.org

1, -2, -1, 2, 1, 0, 2, 2, -6, -4, -4, 6, 1, 4, 6, -4, 0, -2, 2, -4, 6, -10, -1, -6, -3, 12, -6, 0, 8, 12, 2, 2, -2, 2, -12, -12, 2, -2, 0, 8, -11, 6, 6, -12, -6, 4, 8, 4, 2, 0, 6, 14, 4, -6, 2, -4, -6, -6, 2, -12, -11, -12, -1, 2, 20, 0, -8, -4, 18, -4, 12, 0
Offset: 0

Views

Author

Keywords

Comments

This eta-quotient of conductor 20 is one of the twelve weight 2 newforms listed by Martin and Ono.
The associated elliptic curve is "20a1": y^2 = x^3 + x^2 + 4*x + 4 or "20a2": y^2 = x^3 + x^2 - x.
Number 39 of the 74 eta-quotients listed in Table I of Martin (1996).
The mentioned eta-quotient is in fact eta^2(2*z) * eta^2(10*z) with q = exp(2*Pi*i*tau) with Im(tau) > 0, I^2 = -1, with the q-expansion coefficients b(n) from the Michael Somos Oct Aug 13 2006 formula: b(2*n) = 0 and b(2*n+1) = a(n), for n >= 0. A273163(k) = b(prime(k)), k >= 1. See also the comments on multiplicativity of b(n) (called there c(n)) with b(2^k) = b(2)^k = 0, b(5^k) = b(5)^k = (-1)^k, and b(prime(n)^k) = (sqrt(prime(n)))^k*S(k,A273163(n)/sqrt(prime(n))) with Chebyshev's S polynomials (A049310), for n = 2, and n >= 4 and k >= 2. Compare this with the b(p^(e+2)) recurrence given by Michael Somos, Oct 31 2005. - Wolfdieter Lang, May 23 2016

Examples

			G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^6 + 2*x^7 - 6*x^8 - 4*x^9 - 4*x^10 + ...
G.f. of b(n) from eta^2(2*z)*eta^2(10*z) = q - 2*q^3 - q^5 + 2*q^7 + q^9 + 2*q^13 + 2*q^15 - 6*q^17 - 4*q^19 + ..., where q = exp(2*Pi*I*z).
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma0(20), 2), 145) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    A := Basis( CuspForms( Gamma1(20), 2), 145); A[1] - 2*A[3]; /* Michael Somos, May 17 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^5])^2, {x, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; ellan( ellinit( [0, 1, 0, 4, 4], 1), n)[n])}; /* Michael Somos, Oct 31 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^5 + A))^2, n))}; /* Michael Somos, Oct 31 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; ellan( ellinit( [0, 1, 0, -1, 0], 1), n)[n])}; /* Michael Somos, Aug 13 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, a0=1; a1 = y = -sum( x=0, p-1, kronecker( x^3 + x^2 - x, p)); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • Sage
    CuspForms( Gamma0(20), 2, prec=92).0; # Michael Somos, May 28 2013
    

Formula

Euler transform of period 5 sequence [ -2, -2, -2, -2, -4, ...]. - Michael Somos, Oct 31 2005
Given g.f. A(x), then B(x) = q * A(q)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u*w * (u + 8*v + 16*w) - v^3. - Michael Somos, Oct 31 2005
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, else b(p^(e+2)) = b(p)*b(p^(e+1)) - p*b(p^e). - Michael Somos, Oct 31 2005
a(n) = b(2*n + 1) and b(p) = p minus number of points of elliptic curve "20a1" or "20a2" modulo p. - Michael Somos, Aug 13 2006
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(5*k)))^2.
a(121*n + 60) = -11 * a(n).
Convolution square is A030210. - Michael Somos, Jun 13 2014
a(n) = (-1)^n * A159817(n). - Michael Somos, Jun 10 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 20 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 10 2015

A030202 Expansion of q^(-1/4) * eta(q) * eta(q^5) in powers of q.

Original entry on oeis.org

1, -1, -1, 0, 0, 0, 1, 2, 0, 0, -2, 1, -1, 0, 0, -2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, -1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 2, 0, 0, -2, 1, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, -2, 0, 0, 2, -1, -2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number 62 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^2 + x^6 + 2*x^7 - 2*x^10 + x^11 - x^12 - 2*x^15 + x^20 + ...
G.f. = q - q^5 - q^9 + q^25 + 2*q^29 - 2*q^41 + q^45 - q^49 - 2*q^61 + q^81 + ...
		

References

  • Bruce Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see page 44.

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(80), 1), 413)[1]; /* Michael Somos, May 16 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^5], {x, 0, n}] (* Michael Somos, Aug 08 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/5, q^2] EllipticTheta[ 1, 2 Pi/5, q^2] / Sqrt[5], {q, 0, 4 n + 1}] // FullSimplify; (* Michael Somos, Aug 08 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) * eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 04 2007 */
    
  • PARI
    {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, p%20>10, !(e%2), p%4==3, kronecker( -4, e+1), for( y=1, sqrtint(p\5), if( issquare(p - 5*y^2), x=y; break)); (-1)^(e*x) * (e+1))))}; /* Michael Somos, Sep 04 2007 */
    

Formula

Expansion of f(-x, -x^4) * f(-x^2, -x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of q^(-1) * (phi(q) * phi(q^20) - phi(q^4) * phi(q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function.
Euler transform of period 5 sequence [ -1, -1, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), b(p^e) = (i^n +(-i)^n)/2 if p == 3, 7 (mod 20), b(p^e) = (-1)^(e*y) * (e+1) if p == 1, 9 (mod 20) where p = x^2 + 5*y^2. - Michael Somos, Sep 04 2007
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(5*k)).
a(5*n + 3) = a(5*n + 4) = a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -a(n). - Michael Somos, May 16 2015
Convolution square is A030205. - Michael Somos, May 16 2015
a(n) = (-1)^n * A159818(n). - Michael Somos, May 16 2015

A143462 Expansion of 1/(1 + 4*x + 8*x^2).

Original entry on oeis.org

1, -4, 8, 0, -64, 256, -512, 0, 4096, -16384, 32768, 0, -262144, 1048576, -2097152, 0, 16777216, -67108864, 134217728, 0, -1073741824, 4294967296, -8589934592, 0, 68719476736, -274877906944, 549755813888, 0, -4398046511104, 17592186044416
Offset: 0

Views

Author

Michael Somos, Aug 16 2008

Keywords

Examples

			1 - 4*x + 8*x^2 - 64*x^4 + 256*x^5 - 512*x^6 + 4096*x^8 - 16384*x^9 + ...
		

Crossrefs

A030210(2^n) = 2^n * A108520(n) = a(n).

Programs

  • Magma
    I:=[1,-4]; [n le 2 select I[n] else -4 * Self(n-1) - 8 * Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
  • Maple
    A143462 := n -> `if`(n=0, 1, (-4)^n*hypergeom([1/2-n/2, -n/2], [-n], 2)):
    seq(simplify(A143462(n)), n=0..29); # Peter Luschny, Dec 17 2015
  • Mathematica
    CoefficientList[Series[1/(1 + 4*x + 8*x^2), {x, 0, 30}], x] (* Jinyuan Wang, Mar 10 2020 *)
  • PARI
    {a(n) = (-64)^(n \ 4) * [1, -4, 8, 0][n%4 + 1]}
    
  • PARI
    {a(n) = n--; -2 * 2^n * ((-1 + I)^n + (-1 - I)^n)}
    
  • PARI
    {a(n) = n--; simplify( -4 * (2 * quadgen(8))^n * polchebyshev(n, 1, -1 / quadgen(8)))}
    

Formula

G.f.: 1/(1 + 4*x + 8*x^2).
E.g.f.: (cos(2*x) - sin(2*x))/exp(2*x).
a(n) = -4*a(n-1) - 8*a(n-2).
a(n+4) = -64*a(n).
G.f.: 1/(1 + 4*x/(1 - 2*x/(1 + 2*x))) = 1 - 4*x/(1 + 2*x/(1 - 2*x/(1 + 4*x))). - Michael Somos, Jan 03 2013
a(n) = (-4)^n*hypergeom([1/2-n/2, -n/2], [-n], 2) for n >= 1. - Peter Luschny, Dec 17 2015

A346193 Convolution of level 5 of the divisor function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 4, 7, 6, 15, 17, 27, 34, 36, 52, 64, 75, 91, 102, 122, 155, 169, 193, 228, 263, 276, 326, 349, 415, 430, 500, 520, 620, 681, 727, 741, 881, 880, 1090, 1020, 1192, 1178, 1375, 1513, 1590, 1557, 1809, 1756, 2274, 2024, 2323, 2245, 2626, 2865
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[1, k] * DivisorSigma[1, n - 5*k], {k, 1, (n - 1)/5}]; Array[a, 100]
    (* or *)
    c[n_] := SeriesCoefficient[q * (QPochhammer[q] * QPochhammer[q^5])^4, {q, 0, n}]; a[n_] := 5 * DivisorSigma[3, n]/312 + If[Divisible[n, 5], 125 * DivisorSigma[3, n/5]/312, 0] - n * DivisorSigma[1, n]/20 - If[Divisible[n, 5], n * DivisorSigma[1, n/5]/4, 0] + DivisorSigma[1, n]/24 + If[Divisible[n, 5], DivisorSigma[1, n/5]/24, 0] - c[n]/130; Array[a, 100]

Formula

a(n) = Sum_{k < n/5} sigma(k) * sigma(n-5*k).
a(n) = 5*sigma_3(n)/312 + 125*sigma_3(n/5)/312 + (1/24 - n/20)*sigma(n) + (1/24 - n/4)*sigma(n/5) - c_5(n)/130, where sigma_3(n/5) = sigma(n/5) = 0 if n is not divisible by 5, and c_5(n) is the coefficient of q^n in the expansion of (eta(q) * eta(q^5))^4 (A030210).
Showing 1-4 of 4 results.