A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n).
1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 1, 11, 65, 273, 910, 2548, 6188, 13260, 25194, 41990, 58786
Offset: 1
Examples
Triangle begins as: 1; 1, 2; 1, 3, 5; 1, 4, 9, 14; 1, 5, 14, 28, 42; 1, 6, 20, 48, 90, 132; 1, 7, 27, 75, 165, 297, 429; 1, 8, 35, 110, 275, 572, 1001, 1430; 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862;
Links
- Reinhard Zumkeller, Rows n=1..151 of triangle, flattened
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
- Wolfdieter Lang, First 10 rows.
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. See Fig. 6.
Crossrefs
Programs
-
Haskell
a030237 n k = a030237_tabl !! n !! k a030237_row n = a030237_tabl !! n a030237_tabl = map init $ tail a009766_tabl -- Reinhard Zumkeller, Jul 12 2012
-
Magma
[(n-k+1)*Binomial(n+k, k)/(n+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 17 2021
-
Maple
A030237 := proc(n,m) (n-m+1)*binomial(n+m,m)/(n+1) ; end proc: # R. J. Mathar, May 31 2016 # Compare the analogue algorithm for the Bell numbers in A011971. CatalanTriangle := proc(len) local P, T, n; P := [1]; T := [[1]]; for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), P[-1]]); T := [op(T), P] od; T end: CatalanTriangle(6): ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022 # Alternative: ogf := n -> (1 - 2*x)/(1 - x)^(n + 2): ser := n -> series(ogf(n), x, n): row := n -> seq(coeff(ser(n), x, k), k = 0..n-1): seq(row(n), n = 1..11); # Peter Luschny, Mar 27 2022
-
Mathematica
T[n_, k_]:= T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]]; Table[T[n, k], {n,1,12}, {k,0,n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
-
PARI
T(n,k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018
-
Sage
flatten([[(n-k+1)*binomial(n+k, k)/(n+1) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 17 2021
Formula
T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1).
Sum_{k=0..n-1} T(n,k) = A000245(n). - G. C. Greubel, Mar 17 2021
T(n, k) = [x^k] ((1 - 2*x)/(1 - x)^(n + 2)). - Peter Luschny, Mar 27 2022
Extensions
Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012
Comments