A307535 a(n) is the smallest k >= 0 such that 2^(2^n) + k*2^n + 1 is prime.
0, 0, 0, 0, 0, 12, 15, 3, 9, 202, 56, 304, 635, 11095, 8948, 6415, 14441, 877, 37436
Offset: 0
Examples
For n = 5, k = 12; 2^(2^5) + 12*2^5 + 1 = 4294967681 is prime, a(5) = 12.
Programs
-
Mathematica
a[n_] := Module[{k = 0}, While[! PrimeQ[2^(2^n) + k*2^n + 1], k++]; k]; Array[a, 10, 0]
-
PARI
isok(k, n) = isprime(2^(2^n) + k*2^n + 1); a(n) = my(k=0); while (!isok(k, n), k++); k; \\ Michel Marcus, Apr 15 2019
-
Python
from sympy import isprime def A307535(n): r = 2**n m, k = 2**r+1, 0 w = m while not isprime(w): k += 1 w += r return k # Chai Wah Wu, Apr 29 2019
Formula
a(n) == 1 (mod 2^n).
Extensions
a(15) from Daniel Suteu, Apr 14 2019
a(16)-a(17) from Chai Wah Wu, Apr 30 2019
a(18) from Michael S. Branicky, Jun 05 2024
Comments