cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302355 a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of the g.f. of triangular numbers (A000217).

Original entry on oeis.org

1, 6, 72, 1390, 37515, 1307691, 56000728, 2847503268, 167737660533, 11236731677941, 843757483026150, 70200772129462767, 6410711453857626149, 637516967943664853331, 68581800216461580653064, 7935677122691714769565104, 982824624566131043920711329, 129722104862557293606783635718
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Examples

			The initial coefficients of successive iterations of g.f. A(x) = x/(1 - x)^3 are as follows:
n = 1: 0, (1),  3,    6,    10,     15,  ... g.f. A(x)
n = 2: 0,  1,  (6),  30,   137,    588,  ... g.f. A(A(x))
n = 3: 0,  1,   9,  (72),  543,   3933,  ... g.f. A(A(A(x)))
n = 4: 0,  1,  12,  132, (1390), 14208,  ... g.f. A(A(A(A(x))))
n = 5: 0,  1,  15,  210,  2840, (37515), ... g.f. A(A(A(A(A(x)))))
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Nest[Function[x, x/(1 - x)^3], x, n], {x, 0, n}], {n, 18}]

A276644 Self-composition of the repunits; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A002275.

Original entry on oeis.org

0, 1, 22, 464, 9658, 199666, 4112922, 84558014, 1736623658, 35646098566, 731452470122, 15006822709814, 307859627711658, 6315326642698966, 129547066718721322, 2657377349777550614, 54509922224486463658, 1118139793621467673366, 22935894163202834676522, 470473020119757115115414
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2016

Keywords

Crossrefs

Cf. A030267 (self-composition of the natural numbers), A030279 (self-composition of the squares), A030280 (self-composition of the triangular numbers).

Programs

  • Magma
    I:=[0,1,22,464]; [n le 4 select I[n] else 33*Self(n-1)-272*Self(n-2)+330*Self(n-3)-100*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Sep 09 2016
  • Mathematica
    LinearRecurrence[{33, -272, 330, -100}, {0, 1, 22, 464}, 20]
  • PARI
    concat(0, Vec(x*(1-x)*(1-10*x)/((1-21*x+10*x^2)*(1-12*x+10*x^2)) + O(x^99))) \\ Altug Alkan, Sep 08 2016
    

Formula

O.g.f.: x*(1 - x)*(1 - 10*x)/((1 - 21*x + 10*x^2)*(1 - 12*x + 10*x^2)).
a(n) = 33*a(n-1) - 272*a(n-2) + 330*a(n-3) - 100*a(n-4) for n > 3.
a(n) = ((6 - sqrt(26))^n - (6 + sqrt(26))^n)/(18*sqrt(26)) + 10*(((21 + sqrt(401))/2)^n - ((21 - sqrt(401))/2)^n)/(9*sqrt(401)).
A000035(a(n)) = A063524(n).

A279283 Self-composition of the tetrahedral (or triangular pyramidal) numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000292.

Original entry on oeis.org

0, 1, 8, 52, 304, 1650, 8492, 42000, 201356, 941367, 4310480, 19395042, 85972228, 376185250, 1627518840, 6971209090, 29595604656, 124648174343, 521225809112, 2165408553994, 8942942384500, 36733935375275, 150138939637144, 610840125062072, 2474686297520984, 9986301300789540
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x)^12/(1 - 5 x + 6 x^2 - 4 x^3 + x^4)^4, {x, 0, 25}], x]
    LinearRecurrence[{20,-174,876,-2885,6708,-11612,15476,-16206,13468,-8894,4632,-1868,564,-120,16,-1},{0,1,8,52,304,1650,8492,42000,201356,941367,4310480,19395042,85972228,376185250,1627518840,6971209090},40] (* Harvey P. Dale, Jul 26 2018 *)

Formula

G.f.: x*(1 - x)^12/(1 - 5*x + 6*x^2 - 4*x^3 + x^4)^4.

A279284 Self-composition of the pentagonal numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000326.

Original entry on oeis.org

0, 1, 10, 74, 469, 2662, 14115, 71360, 348143, 1652200, 7669883, 34969286, 157060011, 696514465, 3055404733, 13277356490, 57222978070, 244831062184, 1040760406476, 4398642943496, 18493603597214, 77388169532299, 322451025667910, 1338291853544522, 5534486308363461, 22812231761335189, 93741611639348947, 384122032722040412
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x)^3 (1 + 2 x) (1 - x + 7 x^2 - x^3)/(1 - 4 x + x^2 - x^3)^3, {x, 0, 25}], x]
    LinearRecurrence[{12, -51, 91, -75, 66, -28, 15, -3, 1}, {0, 1, 10, 74, 469, 2662, 14115, 71360, 348143}, 26]

Formula

G.f.: x*(1 - x)^3*(1 + 2*x)*(1 - x + 7*x^2 - x^3)/(1 - 4*x + x^2 - x^3)^3.
a(n) = 12*a(n-1) - 51*a(n-2) + 91*a(n-3) - 75*a(n-4) + 66*a(n-5) - 28*a(n-6) + 15*a(n-7) - 3*a(n-8) + a(n-9).
Showing 1-4 of 4 results.