A030512 Concatenation of first n 2-digit positive integers including leading zeros.
1, 102, 10203, 1020304, 102030405, 10203040506, 1020304050607, 102030405060708, 10203040506070809, 1020304050607080910, 102030405060708091011, 10203040506070809101112, 1020304050607080910111213, 102030405060708091011121314
Offset: 1
Examples
From _Peter Bala_, Sep 14 2015: (Start) Decimal expansions with repeating strings of digits in parentheses for clarity: sqrt(a(50)) = 1.(0101...0101)0075(5050...5050)4728503 (7878...7878)7065734690(6565...6565)63090366531526199 (4949...4949)40423435587935014204(5454...5454) 511096186531728108723958(33...33)197004273464583079020182291 (66...66)107291492892700779438018798828124(99...99) 7645962810367893557912773556179470486(11...11) 010064064746152... * 10^49. 1/sqrt(a(10)) = 9.9(0...0)53955(0...0)441082125(0..0)4... * 10^(-10). The long strings of zeros gradually shorten in length until they disappear and are interspersed with five blocks of digits [99, 53955, 441082125, 400649596875, 38211955301953125] = [3^2*11, 3^2*5*11*109, 3^3*5^3*11*109^2, 3^2*5^5*11*109^3, 3^2*5^8*7*11*109^4]. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..99 [Truncated to 99 terms by _Georg Fischer_, Mar 10 2020]
Programs
-
Magma
[-(199/9801)-(1/99)*n+(10000/9801)*100^n: n in [0..98]]; // Vincenzo Librandi, May 17 2013
-
Mathematica
Table[-(199/9801)-(1/99) n + (10000/9801) 100^n, {n, 0, 98}] (* Vincenzo Librandi, May 17 2013 *)
-
PARI
a(n) = -(199/9801) - (1/99)*(n-1) + (10000/9801)*100^(n-1); vector(20, n, a(n)) \\ Altug Alkan, Oct 01 2015
Formula
a(n+1) = 100*a(n) + n + 1 for n<100.
Extensions
Edited by Charles R Greathouse IV, Apr 28 2010
Limits corrected by Georg Fischer, Mar 10 2020
Comments