A030649 Dimensions of multiples of minimal representation of complex Lie algebra E7.
1, 56, 1463, 24320, 293930, 2785552, 21737254, 144538624, 839848450, 4347450800, 20355385710, 87265194240, 345992859975, 1279301331000, 4442249264625, 14573017267200, 45398364338250, 134897996890800, 383822534859750, 1049290591104000, 2764459117589400
Offset: 0
Keywords
References
- Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.2(ii), case a=4]
Crossrefs
Cf. A121736.
Programs
-
Maple
b:=binomial; t72b:= proc(a,k) ((a+k+1)/(a+1)) * b(k+2*a+1,k)*b(k+3*a/2+1,k)/(b(k+a/2,k)); end; [seq(t72b(8,k),k=0..28)];
-
Mathematica
Table[(1/10950439500)*(n + 9)*Binomial[n + 17, 4]*Binomial[n + 4, 4]* Binomial[n + 13, 9]^2, {n,0,50}] (* G. C. Greubel, Feb 19 2017 *)
-
PARI
for(n=0,25, print1((1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2, ", ")) \\ G. C. Greubel, Feb 19 2017
Formula
a(n) = (1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2.
Extensions
Entry revised by N. J. A. Sloane, Oct 20 2007
Comments