cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030649 Dimensions of multiples of minimal representation of complex Lie algebra E7.

Original entry on oeis.org

1, 56, 1463, 24320, 293930, 2785552, 21737254, 144538624, 839848450, 4347450800, 20355385710, 87265194240, 345992859975, 1279301331000, 4442249264625, 14573017267200, 45398364338250, 134897996890800, 383822534859750, 1049290591104000, 2764459117589400
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Comments

From Alexander R. Povolotsky, Nov 19 2007: (Start)
After adjustment for the fact that a(n) is indexed from 0 while A121736 is indexed from 1, it appears that in many cases (with some exceptions) (a(n) - A121736(n+1))/133 (where A121736(3) = 133) yields integral values:
(1 - 1)/133 = 0
(56 - 56)/133 = 0
(1463 - 133) / 133 = 10
(24320 - 912) / 133 = 176
(293930 - 1463) / 133 = 2199
(2785552 - 1539) / 133 = 146527/7
(21737254 - 6480) / 133 = 21730774/133
(144538624 - 7371) / 133 = 144531253/133
(839848450 - 8645) / 133 = 6314585
(4347450800 - 24320) / 133 = 228811920/7
(20355385710 - 27664) / 133 = 153047805
(87265194240 - 40755) / 133 = 656128974
(345992859975 - 51072) / 133 = 2601449691
(1279301331000 - 86184) / 133 = 9618806352
(4442249264625 - 150822) / 133 = 233802584937/7
(14573017267200 - 152152)/133 = 109571557256
(45398364338250 - 238602)/133 = 341341083456
(134897996890800 - 253935)/133 = 1014270651405
(383822534565820 - 293930)/133 = 2885883718540
(1049290591104000 - 320112)/133 = 1049290590783888/133
...
Note that 133 is also the dimension of the Lie algebra E_7. (End)

References

  • Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5.

Crossrefs

Cf. A121736.

Programs

  • Maple
    b:=binomial; t72b:= proc(a,k) ((a+k+1)/(a+1)) * b(k+2*a+1,k)*b(k+3*a/2+1,k)/(b(k+a/2,k)); end; [seq(t72b(8,k),k=0..28)];
  • Mathematica
    Table[(1/10950439500)*(n + 9)*Binomial[n + 17, 4]*Binomial[n + 4, 4]* Binomial[n + 13, 9]^2, {n,0,50}] (* G. C. Greubel, Feb 19 2017 *)
  • PARI
    for(n=0,25, print1((1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2, ", ")) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = (1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2.

Extensions

Entry revised by N. J. A. Sloane, Oct 20 2007