cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030980 Number of planted noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes, root degree 1 and no nonroot nodes of degree 1.

Original entry on oeis.org

1, 0, 3, 4, 23, 66, 280, 1030, 4207, 16852, 69747, 289950, 1222540, 5192344, 22239672, 95864902, 415730735, 1812177000, 7936353049, 34901789568, 154067755503, 682428824890, 3032173906692, 13510960371744, 60360526255204, 270311970889296, 1213232586744900, 5456560663318648
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A378079.

Programs

  • PARI
    a(n) = sum(k=1, n, ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n) \\ Michel Marcus, Aug 03 2017
    
  • PARI
    seq(n)={Vec(serreverse(x/(1/(1 -x)^2 - 2*x) + O(x*x^n)))} \\ Andrew Howroyd, Nov 21 2024

Formula

a(n) = Sum_{k=1..n} ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n.
G.f.: A(z) satisfies A(z)^3 + 2z*A(z)^3 - 2A(z)^2 - 4z*A(z)^2 + A(z) + 2z*A - z = 0.
D-finite with recurrence -2*n*(2*n-1)*a(n) +3*n*(n-2)*a(n-1) +30*(2*n-3)*(n-2)*a(n-2) +76*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 24 2022

Extensions

a(25) onwards from Andrew Howroyd, Nov 21 2024