A030980 Number of planted noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes, root degree 1 and no nonroot nodes of degree 1.
1, 0, 3, 4, 23, 66, 280, 1030, 4207, 16852, 69747, 289950, 1222540, 5192344, 22239672, 95864902, 415730735, 1812177000, 7936353049, 34901789568, 154067755503, 682428824890, 3032173906692, 13510960371744, 60360526255204, 270311970889296, 1213232586744900, 5456560663318648
Offset: 1
Keywords
Links
Crossrefs
Cf. A378079.
Programs
-
PARI
a(n) = sum(k=1, n, ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n) \\ Michel Marcus, Aug 03 2017
-
PARI
seq(n)={Vec(serreverse(x/(1/(1 -x)^2 - 2*x) + O(x*x^n)))} \\ Andrew Howroyd, Nov 21 2024
Formula
a(n) = Sum_{k=1..n} ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n.
G.f.: A(z) satisfies A(z)^3 + 2z*A(z)^3 - 2A(z)^2 - 4z*A(z)^2 + A(z) + 2z*A - z = 0.
D-finite with recurrence -2*n*(2*n-1)*a(n) +3*n*(n-2)*a(n-1) +30*(2*n-3)*(n-2)*a(n-2) +76*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 24 2022
Extensions
a(25) onwards from Andrew Howroyd, Nov 21 2024