A031150 Appending a digit to n^2 gives another perfect square.
1, 2, 4, 5, 6, 12, 18, 43, 80, 154, 191, 228, 456, 684, 1633, 3038, 5848, 7253, 8658, 17316, 25974, 62011, 115364, 222070, 275423, 328776, 657552, 986328, 2354785, 4380794, 8432812, 10458821, 12484830, 24969660, 37454490
Offset: 1
Examples
5^2 = 25 and 16^2 = 256, so 5 is in the sequence. 115364^2 = 13308852496, 364813^2 = 133088524969.
References
- R. K. Guy, Neg and Reg, preprint, Jan 2012.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Joshua Stucky, Pell's Equation and Truncated Squares, Number Theory Seminar, Kansas State University, Feb 19 2018.
- Index to sequences related to truncating digits of squares.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,38,0,0,0,0,0,0,-1).
Programs
-
Maple
for i from 1 to 150000 do if (floor(sqrt(10 * i^2 + 9)) > floor(sqrt(10 * i^2))) then print(i) end if end do;
-
Mathematica
CoefficientList[Series[(x^10 + 2 x^9 + 4 x^8 + 5 x^7 + 18 x^6 + 12 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)/(x^14 - 38 x^7 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *) LinearRecurrence[{0,0,0,0,0,0,38,0,0,0,0,0,0,-1},{1,2,4,5,6,12,18,43,80,154,191,228,456,684},40] (* Harvey P. Dale, Jun 09 2017 *)
Formula
G.f.: x*(x^10+2*x^9+4*x^8+5*x^7+18*x^6+12*x^5+6*x^4+5*x^3+4*x^2+2*x+1) / (x^14-38*x^7+1). - Colin Barker, Jan 30 2013
Comments