cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031217 Number of terms in longest arithmetic progression of consecutive primes starting at n-th prime (conjectured to be unbounded).

Original entry on oeis.org

2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) <= 4 for n <= 10^5. - Reinhard Zumkeller, Feb 02 2007
The first instance of 4 consecutive primes in an arithmetic progression is (251, 257, 263, 269), which starts with the 54th prime. The first instance of 5 consecutive primes in an arithmetic progression is (9843019, 9843049, 9843079, 9843109, 9843139), which starts with the 654926th prime. [Harvey P. Dale, Jul 13 2011]

Examples

			At 47 there are 3 consecutive primes in A.P., 47 53 59.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A6.

Crossrefs

Cf. A001223.

Programs

  • Mathematica
    max = 5; a[n_] := Catch[pp = NestList[ NextPrime, Prime[n], max-1]; Do[ If[ Length[ Union[ Differences[pp[[1 ;; -k]] ] ] ] == 1, Throw[max-k+1]], {k, 1, max-1}]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jul 17 2012 *)
    Length[Split[Differences[#]][[1]]]&/@Partition[Prime[Range[120]],10,1]+1 (* Harvey P. Dale, Mar 17 2024 *)
  • PARI
    a(n)=my(p=prime(n),q=nextprime(p+1),g=q-p,k=2); while(nextprime(q+1)==q+g, q+=g; k++); k \\ Charles R Greathouse IV, Jun 20 2013

Extensions

More terms from James Sellers