cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A031749 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 71.

Original entry on oeis.org

5043, 20168, 45375, 80664, 126035, 181488, 247023, 322640, 408339, 504120, 609983, 725928, 851955, 988064, 1134255, 1290528, 1456883, 1633320, 1819839, 2016440, 2223123, 2439888, 2666735, 2903664, 3150675, 3407768, 3674943, 3952200, 4239539
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion of sqrt((j*m)^2+t*m) for m >= 1 where t divides 2*j has the form [j*m, 2*j/t, 2*j*m, 2*j/t, 2*j*m, ...]. Thus numbers of the form (71*m)^2 + 2*m for m >= 1 are in the sequence. Are there any others? - Chai Wah Wu, Jun 18 2016
The term 25776072 is not of the form (71*m)^2 + 2*m. - Chai Wah Wu, Jun 19 2016

Crossrefs

Cf. A031424.

Programs

  • Mathematica
    lt71Q[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Min[ContinuedFraction[s] [[2]]]] == 71]; Select[Range[43*10^5],lt71Q] (* Harvey P. Dale, Apr 11 2017 *)
  • Python
    from sympy import continued_fraction_periodic
    A031749_list = [n for n, d in ((n, continued_fraction_periodic(0,1,n)[-1]) for n in range(1,10**5)) if isinstance(d, list) and min(d) == 71] # Chai Wah Wu, Jun 09 2017

A276689 Least term in the periodic part of the continued fraction expansion of sqrt(n) or 0 if n is square.

Original entry on oeis.org

0, 0, 2, 1, 0, 4, 2, 1, 1, 0, 6, 3, 2, 1, 1, 1, 0, 8, 4, 1, 2, 1, 1, 1, 1, 0, 10, 5, 2, 1, 2, 1, 1, 1, 1, 1, 0, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 14, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 16, 8, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 18, 9, 6, 1
Offset: 0

Views

Author

Chai Wah Wu, Sep 28 2016

Keywords

Comments

If r > 0 is even, then a((rm/2)^2+m) = r for all m >= 1 and a((r^2-2)^2/4 + (r+1)^3) = r.
If r is odd, then a((rm)^2+2m) = r for all m >= 1 and a(r^4 + r^3 + 5(r+1)^2/4) = r.

Crossrefs

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A276689(n):
        x = continued_fraction_periodic(0,1,n)
        return min(x[1]) if len(x) > 1 else 0

A031428 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 4.

Original entry on oeis.org

5, 18, 39, 68, 105, 150, 174, 203, 264, 333, 370, 410, 495, 588, 689, 793, 798, 855, 915, 1040, 1105, 1173, 1313, 1314, 1378, 1387, 1462, 1463, 1620, 1785, 1958, 2138, 2139, 2222, 2232, 2328, 2525, 2730, 2834, 2943, 3164, 3393, 3630, 3741
Offset: 1

Views

Author

Keywords

Crossrefs

Different from A007742.
Cf. A031424.

Programs

  • Mathematica
    Select[Range[4000], !IntegerQ[Sqrt[#]] && Min[ContinuedFraction[Sqrt[#]][[2]]] == 4&] (* Vincenzo Librandi, Feb 06 2012 *)

A031689 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 11.

Original entry on oeis.org

123, 488, 1095, 1944, 3035, 4368, 5943, 7760, 9819, 12120, 14663, 16152, 17448, 19344, 20475, 23744, 27255, 31008, 35003, 37284, 39240, 43719, 48440, 53403, 53866, 58608, 59093, 64055, 64562, 67128, 69744, 75675, 81848, 88263, 94920, 101819
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A031424.

Programs

  • Mathematica
    Select[Range[110000],!IntegerQ[Sqrt[#]]&&Min[ContinuedFraction[Sqrt[#]][[2]]]==11&] (* Vincenzo Librandi, Jan 27 2012 *)

Extensions

Content that was based on the incorrect assumption that a(n)=121*n^2+2*n removed by R. J. Mathar, Nov 18 2010

A031700 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 22.

Original entry on oeis.org

122, 486, 1092, 1940, 3030, 4362, 5936, 7752, 9810, 12110, 14652, 17436, 20462, 23730, 27240, 30992, 34986, 39222, 43700, 48420, 53382, 58586, 64032, 69720, 70248, 75650, 81822, 88236, 94892, 101790, 108930, 116312, 123936, 131802, 139910
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A031424.

Programs

  • Mathematica
    Select[Range[200000],!IntegerQ[Sqrt[#]]&&Min[ContinuedFraction[Sqrt[#]][[2]]]==22&] (* Vincenzo Librandi, Feb 06 2012 *)

A031702 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 24.

Original entry on oeis.org

145, 578, 1299, 2308, 3605, 5190, 7063, 9224, 11673, 14410, 17435, 20748, 24349, 28238, 32415, 36880, 41633, 46674, 52003, 57620, 63525, 69718, 76199, 82968, 90025, 97370, 97994, 105003, 112924, 121133, 129630, 138415, 147488, 156849, 166498
Offset: 1

Views

Author

Keywords

Examples

			The continued fraction for sqrt(97994) is 313, [25, 24, 25, 626], where the smallest term of the periodic part is 24, so 97994 belongs to the sequence.
		

Crossrefs

Cf. A031424.

Programs

  • Mathematica
    Select[Range[200000], !IntegerQ[Sqrt[#]] && Min[ContinuedFraction[Sqrt[#]][[2]]] == 24&] (* Vincenzo Librandi, Feb 06 2012 *)
  • Python
    from sympy import continued_fraction_periodic
    A031702_list = [n for n, s in ((i, continued_fraction_periodic(0,1,i)[-1]) for i in range(1,10**5)) if isinstance(s, list) and min(s) == 24] # Chai Wah Wu, Jun 08 2017
Showing 1-6 of 6 results.