cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032034 Shifts left under "AIJ" (ordered, indistinct, labeled) transform.

Original entry on oeis.org

2, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, 109979486890, 3764281873042, 141104799067178, 5749087305575378, 252969604725106090, 11955367835505775378, 603967991604199335722, 32479636694930586142802, 1852497140997527094395050
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): A032034 := n -> add(eulerian2(n-1,k)*2^(k+1), k=0..n-1):
    seq(A032034(n), n=1..17); # Peter Luschny, Nov 10 2012
  • Mathematica
    Eulerian2[n_, k_] := Eulerian2[n, k] = If[k == 0, 1, If[k == n, 0, Eulerian2[n-1, k] (k+1) + Eulerian2[n-1, k-1] (2n-k-1)]];
    a[n_] := Sum[Eulerian2[n-1, k] 2^(k+1), {k, 0, n-1}];
    Array[a, 20] (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
  • Maxima
    a(n):=if n=1 then 2 else ((n-1)!*sum(binomial(n+k-1,n-1)*sum((-1)^(j+n+1)*binomial(k,j)*sum((binomial(j,l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j-1,j-l))/(n-l+j-1)!,l,0,j),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Jan 24 2012 */
    
  • PARI
    seq(n)={my(p=O(x)); for(i=1, n, p=intformal(1 + 1/(1-p))); Vec(serlaplace(p))} \\ Andrew Howroyd, Sep 19 2018
  • Sage
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        elif k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    A032034 = lambda n: add(eulerian2(n-1,k)*2^(k+1) for k in (0..n-1))
    [A032034(n) for n in (1..17)]  # Peter Luschny, Nov 10 2012
    

Formula

a(n) = ((n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, (-1)^(j+n+1)*binomial(k,j)*sum(l=0..j, (binomial(j,l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j-1,j-l))/(n-l+j-1)!)))), n>1, a(1)=2. - Vladimir Kruchinin, Jan 24 2012
Let p(n,w) = w*Sum_{k=0..n-1} ((-1)^k*E2(n-1,k)*w^k)/(1+w)^(2*n-1),
E2 the second-order Eulerian numbers as defined by Knuth, then a(n) = p(n,-2). - Peter Luschny, Nov 10 2012
G.f.: 1 + 1/Q(0), where Q(k)= 1 + k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) = 2 * A032188(n). - Alois P. Heinz, Jul 04 2018