cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A091481 Number of labeled rooted 2,3 cacti (triangular cacti with bridges).

Original entry on oeis.org

1, 2, 12, 112, 1450, 23976, 482944, 11472896, 314061948, 9734500000, 336998573296, 12888244482048, 539640296743288, 24552709165722752, 1206192446775000000, 63633506348182798336, 3587991568046845781776, 215334327830586721473024, 13705101790650454900938688
Offset: 1

Views

Author

Christian G. Bower, Jan 13 2004

Keywords

Comments

Also labeled involution rooted trees.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.84).

Crossrefs

a(n) = A091485(n)*n. Cf. A032035, A066325, A091486.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/E^(x*(2+x)/2),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=sum(((n-1)!/((n-k-1)!*(2*k-n+1)!)*n^k*2^(-n+k+1)),k,ceiling((n-1)/2),n-1); /* Vladimir Kruchinin, Aug 07 2012 */
    
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(serreverse(x/exp(x^2/2+x)))) /* Joerg Arndt, Jan 25 2013 */

Formula

E.g.f. A(x) satisfies A(x) = x*exp(A(x)+A(x)^2/2).
a(n) = i^(n-1)*n^((n-1)/2)*He_{n-1}(-sqrt(-n)), i=sqrt(-1), He_k unitary Hermite polynomial (cf. A066325).
a(n) = Sum_{k = ceiling((n-1)/2)...n-1} (n-1)!/((n-k-1)!*(2*k-n+1)!)*n^k*2^(-n+k+1). - Vladimir Kruchinin, Aug 07 2012
a(n) ~ 2^(n+1/2) * n^(n-1) * exp((sqrt(5)-3)*n/4) / (sqrt(5+sqrt(5)) * (sqrt(5)-1)^n). - Vaclav Kotesovec, Jan 08 2014
Showing 1-1 of 1 results.