A361245
Number of noncrossing 2,3 cacti with n nodes.
Original entry on oeis.org
1, 1, 1, 4, 20, 115, 715, 4683, 31824, 222300, 1586310, 11514030, 84742320, 630946446, 4743789260, 35965715780, 274659794160, 2110810059795, 16312695488265, 126693445737170, 988340783454380, 7740875273884445, 60846920004855985, 479854293574853085
Offset: 0
A091485
Number of labeled 2,3 cacti (triangular cacti with bridges).
Original entry on oeis.org
1, 1, 4, 28, 290, 3996, 68992, 1434112, 34895772, 973450000, 30636233936, 1074020373504, 41510792057176, 1753764940408768, 80412829785000000, 3977094146761424896, 211058327532167398928, 11963018212810373415168, 721321146876339731628352
Offset: 1
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 28*x^3/3! + 290*x^4/4! + 3996*x^5/5! +...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.84).
-
CoefficientList[1/x InverseSeries[x/Exp[x+x^2/2]+O[x]^20], x] Range[0, 18]! (* Jean-François Alcover, Aug 06 2018 *)
A032035
Number of increasing rooted 2,3 cacti (triangular cacti with bridges) with n-1 nodes.
Original entry on oeis.org
1, 1, 1, 3, 13, 77, 573, 5143, 54025, 650121, 8817001, 133049339, 2210979381, 40118485237, 789221836741, 16730904387183, 380227386482641, 9221550336940241, 237724953543108753, 6491255423787076915, 187156557809878784797, 5681772224922980536413
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- O. Bodini, M. Dien, X. Fontaine, A. Genitrini, H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016, Lecture Notes in Computer Science Series Volume 9644.
- C. G. Bower, Transforms (2)
- Index entries for sequences related to cacti
- Index entries for sequences related to rooted trees
-
A:= proc(n) option remember; if n=0 then x else convert(series(Int(exp(A(n-1)+ A(n-1)^2/2), x), x=0, n+1), polynom) fi end; a:= n-> if n=1 then 1 else coeff(A(n-1), x, n-1)*(n-1)! fi: seq(a(n), n=1..20); # Alois P. Heinz, Aug 22 2008
-
CoefficientList[Series[Sqrt[2]*InverseErf[Sqrt[2/(E*Pi)] x + Erf[1/Sqrt[2]]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 07 2014 *)
m = 22; A[_] = 0;
Do[A[x_] = Integrate[Exp[A[x] + A[x]^2/2], x] + O[x]^m, {m}];
CoefficientList[1 + A[x], x]*Range[0, m-1]! (* Jean-François Alcover, Sep 29 2019 *)
-
seq(n)={my(p=x+O(x*x^(n%2))); for(i=1, n\2, p=intformal(1 + intformal(1/(1-p)))); Vec(serlaplace(p))} \\ Andrew Howroyd, Sep 19 2018
Showing 1-3 of 3 results.
Comments