A364475
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.
Original entry on oeis.org
1, 1, 4, 18, 94, 529, 3135, 19270, 121732, 785496, 5155167, 34304706, 230923653, 1569684910, 10759159000, 74281473504, 516089542684, 3605685460750, 25316226436086, 178538289189108, 1264131169628799, 8982889404251721, 64041351551534215
Offset: 0
-
A364475 := proc(n)
add( binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k)/(2*n-2*k+1),k=0..n/2) ;
end proc:
seq(A364475(n),n=0..80); # R. J. Mathar, Jul 27 2023
-
a(n) = sum(k=0, n\2, binomial(3*n-3*k, k)*binomial(3*n-4*k, n-2*k)/(2*n-2*k+1));
A364474
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x).
Original entry on oeis.org
1, 1, 4, 16, 77, 403, 2228, 12800, 75653, 457022, 2809266, 17514200, 110480475, 703850686, 4522217364, 29268545416, 190645760149, 1248817411471, 8221323983431, 54365667330636, 360954069730636, 2405225494066647, 16080210766344354, 107828663888705292
Offset: 0
-
A364474 := proc(n)
add( binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k)/(2*n-4*k+1),k=0..n/2) ;
end proc:
seq(A364474(n),n=0..80); # R. J. Mathar, Jul 27 2023
-
Table[Sum[Binomial[3*n - 5*k, k]*Binomial[3*n - 6*k, n - 2*k]/(2*n - 4*k + 1), {k, 0, Floor[n/2]}], {n, 0, 25}] (* Wesley Ivan Hurt, May 25 2024 *)
-
a(n) = sum(k=0, n\2, binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1));
A364478
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^8.
Original entry on oeis.org
1, 1, 4, 23, 154, 1124, 8675, 69626, 575243, 4859778, 41789764, 364565277, 3218581695, 28702642553, 258172627259, 2339496034381, 21337716782873, 195726876816623, 1804472496834650, 16711389876481027, 155395461519245354, 1450298253483719944
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*n+2*k, k)*binomial(3*n+k, n-2*k)/(2*n+3*k+1));
A361244
Number of noncrossing bridgeless cacti with n nodes.
Original entry on oeis.org
1, 1, 0, 1, 1, 6, 13, 57, 169, 673, 2301, 8933, 32747, 127063, 483484, 1889957, 7352241, 29003446, 114481435, 455542880, 1816976042, 7285391071, 29291855748, 118218771203, 478372112363, 1941436590561, 7897802784418, 32205683248225, 131602039333873
Offset: 0
A367040
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.
Original entry on oeis.org
1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));
A367027
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 - x^2*A(x)^5.
Original entry on oeis.org
1, 1, 2, 4, 5, -13, -147, -816, -3534, -12650, -35420, -53040, 199056, 2391340, 14555740, 68264112, 261045693, 769660569, 1167906402, -5145668100, -61758940705, -385813067255, -1857144860445, -7266981925560, -21793022441775, -32643056947527, 161919845140752
Offset: 0
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-k, k)*binomial(3*n-2*k, n-2*k))/(2*n+1);
Showing 1-6 of 6 results.