A032132 Number of series-reduced dyslexic planted planar trees with n leaves.
1, 1, 2, 6, 17, 57, 191, 684, 2482, 9275, 35127, 135156, 525545, 2064329, 8173895, 32600082, 130823306, 527888023, 2140454687, 8716907165, 35638352814, 146221542191, 601870210193, 2484682879348, 10285116277096, 42679973961811, 177514171393035, 739881841810694, 3089914920914855, 12927860306782626
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
- S. L. Devadoss and R. C. Read, Cellular Structures Determined by Polygons and Trees, Ann. Combin., 5 (2001), 71-98.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces and Stasheff polytopes, arXiv:1307.6132 [math.DG], 2014.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces and Stasheff polytopes, Commun. Math. Phys., 337 (2015), 1255-1274.
- Index entries for sequences related to rooted trees
Programs
-
Mathematica
BIK[p_] := (1/(1-p) + (1+p)/(1-p /. x -> x^2))/2; seq[n_] := Module[{p=x}, For[i=2, i <= n, i++, p += x^i Coefficient[BIK[p] + x O[x]^i // Normal, x, i]]; CoefficientList[p/x, x]]; seq[30] (* Jean-François Alcover, Nov 22 2018, after Andrew Howroyd *)
-
PARI
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2} seq(n)={my(p=x); for(i=2, n, p+=x^i*polcoeff(BIK(p) + O(x*x^i), i)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 30 2018
Formula
Doubles (index 2+) under "BIK" (reversible, indistinct, unlabeled) transform.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then 2*A(x) = x + BIK(A(x)) = x + (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1-A(x^2))). - Petros Hadjicostas, Jan 17 2018
Extensions
a(25)-a(30) from Petros Hadjicostas, Jan 17 2018
Comments